942 resultados para Stochastic simulation algorithm
Resumo:
The main purpose of this work was the development of procedures for the simulation of atmospheric ows over complex terrain, using OpenFOAM. For this aim, tools and procedures were developed apart from this code for the preprocessing and data extraction, which were thereafter applied in the simulation of a real case. For the generation of the computational domain, a systematic method able to translate the terrain elevation model to a native OpenFOAM format (blockMeshDict) was developed. The outcome was a structured mesh, in which the user has the ability to de ne the number of control volumes and its dimensions. With this procedure, the di culties of case set up and the high computation computational e ort reported in literature associated to the use of snappyHexMesh, the OpenFOAM resource explored until then for the accomplishment of this task, were considered to be overwhelmed. Developed procedures for the generation of boundary conditions allowed for the automatic creation of idealized inlet vertical pro les, de nition of wall functions boundary conditions and the calculation of internal eld rst guesses for the iterative solution process, having as input experimental data supplied by the user. The applicability of the generated boundary conditions was limited to the simulation of turbulent, steady-state, incompressible and neutrally strati ed atmospheric ows, always recurring to RaNS (Reynolds-averaged Navier-Stokes) models. For the modelling of terrain roughness, the developed procedure allowed to the user the de nition of idealized conditions, like an uniform aerodynamic roughness length or making its value variable as a function of topography characteristic values, or the using of real site data, and it was complemented by the development of techniques for the visual inspection of generated roughness maps. The absence and the non inclusion of a forest canopy model limited the applicability of this procedure to low aerodynamic roughness lengths. The developed tools and procedures were then applied in the simulation of a neutrally strati ed atmospheric ow over the Askervein hill. In the performed simulations was evaluated the solution sensibility to di erent convection schemes, mesh dimensions, ground roughness and formulations of the k - ε and k - ω models. When compared to experimental data, calculated values showed a good agreement of speed-up in hill top and lee side, with a relative error of less than 10% at a height of 10 m above ground level. Turbulent kinetic energy was considered to be well simulated in the hill windward and hill top, and grossly predicted in the lee side, where a zone of ow separation was also identi ed. Despite the need of more work to evaluate the importance of the downstream recirculation zone in the quality of gathered results, the agreement between the calculated and experimental values and the OpenFOAM sensibility to the tested parameters were considered to be generally in line with the simulations presented in the reviewed bibliographic sources.
Resumo:
O presente trabalho, desenvolvido sob a orientação do Prof. Jaime Gabriel Silva, centra-se na procura e aplicação de metodologias de planeamento com apoio de ferramentas informáticas de análise de risco, que permitem realizar, em tempo útil, o cálculo dos prazos resultantes de inúmeras combinações possíveis associadas à incerteza das durações das atividades, recorrendo a modelos estocásticos. O trabalho aborda inicialmente o contexto da Gestão na Construção, com particular enfase na Gestão do Risco. Nessa fase inicial, fez-se também um pequeno inquérito a profissionais com diferentes níveis de responsabilidade organizacional e empresas do setor. A parte fundamental do trabalho, incide nos procedimentos a adotar na elaboração do planeamento de empreitadas. Nesta parte do trabalho, introduzem-se os conceitos da análise de risco com recurso a uma ferramenta informática de apoio, o @Risk, que permite a utilização do Método de Monte Carlo, para obtenção de resultados num contexto de uma tomada de decisão baseada no risco. Refira-se que houve vários contactos com o fornecedor do programa, que permitiram tirar partido de outro programa da Palisade, Evolver, direcionado para otimização matemática, podendo ser utilizado, por exemplo, na perspetiva da minimização dos custos, o que pode interessar pela relação destes com as opções adotadas na elaboração do planeamento de empreendimentos. Finalmente, toma-se um exemplo real do planeamento de uma empreitada em execução à data da realização deste trabalho, onde se aplicaram os conceitos desenvolvidos no trabalho, confrontando os resultados com o andamento da obra.
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 724 – 727, Seattle, EUA
Resumo:
Pultrusion is an industrial process used to produce glass fibers reinforced polymers profiles. These materials are worldwide used when performing characteristics, such as great electrical and magnetic insulation, high strength to weight ratio, corrosion and weather resistance, long service life and minimal maintenance are required. In this study, we present the results of the modelling and simulation of heat flow through a pultrusion die by means of Finite Element Analysis (FEA). The numerical simulation was calibrated based on temperature profiles computed from thermographic measurements carried out during pultrusion manufacturing process. Obtained results have shown a maximum deviation of 7%, which is considered to be acceptable for this type of analysis, and is below to the 10% value, previously specified as maximum deviation. © 2011, Advanced Engineering Solutions.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Everyday accounting and management teachers face the challenge of creating learning environments that motivate students. This chapter describes the Business Simulation (BS) experience that has taken place at the Polytechnic Institute of Porto, Institute of Accounting and Administration (IPP/ISCAP). The chapter presents students’ perceptions about the course and the teaching/learning approach. The results show that pedagogical methods used (competency-oriented), generic competencies (cooperation and group work), and interpersonal skills (organisational and communication skills) are relevant for future accounting professionals. In addition, positive remarks and possible constraints based on observation, staff meetings, and past research are reported. The chapter concludes with some recommendations from the project implementation.
Resumo:
Dissertação de Doutoramento em Matemática: Processos Estocásticos
Resumo:
Volatile organic compounds are a common source of groundwater contamination that can be easily removed by air stripping in columns with random packing and using a counter-current flow between the phases. This work proposes a new methodology for column design for any type of packing and contaminant which avoids the necessity of an arbitrary chosen diameter. It also avoids the employment of the usual graphical Eckert correlations for pressure drop. The hydraulic features are previously chosen as a project criterion. The design procedure was translated into a convenient algorithm in C++ language. A column was built in order to test the design, the theoretical steady-state and dynamic behaviour. The experiments were conducted using a solution of chloroform in distilled water. The results allowed for a correction in the theoretical global mass transfer coefficient previously estimated by the Onda correlations, which depend on several parameters that are not easy to control in experiments. For best describe the column behaviour in stationary and dynamic conditions, an original mathematical model was developed. It consists in a system of two partial non linear differential equations (distributed parameters). Nevertheless, when flows are steady, the system became linear, although there is not an evident solution in analytical terms. In steady state the resulting ODE can be solved by analytical methods, and in dynamic state the discretization of the PDE by finite differences allows for the overcoming of this difficulty. To estimate the contaminant concentrations in both phases in the column, a numerical algorithm was used. The high number of resulting algebraic equations and the impossibility of generating a recursive procedure did not allow the construction of a generalized programme. But an iterative procedure developed in an electronic worksheet allowed for the simulation. The solution is stable only for similar discretizations values. If different values for time/space discretization parameters are used, the solution easily becomes unstable. The system dynamic behaviour was simulated for the common liquid phase perturbations: step, impulse, rectangular pulse and sinusoidal. The final results do not configure strange or non-predictable behaviours.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática
Resumo:
This paper presents a model for the simulation of an offshore wind system having a rectifier input voltage malfunction at one phase. The offshore wind system model comprises a variable-speed wind turbine supported on a floating platform, equipped with a permanent magnet synchronous generator using full-power four-level neutral point clamped converter. The link from the offshore floating platform to the onshore electrical grid is done through a light high voltage direct current submarine cable. The drive train is modeled by a three-mass model. Considerations about the smart grid context are offered for the use of the model in such a context. The rectifier voltage malfunction domino effect is presented as a case study to show capabilities of the model. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Recent integrated circuit technologies have opened the possibility to design parallel architectures with hundreds of cores on a single chip. The design space of these parallel architectures is huge with many architectural options. Exploring the design space gets even more difficult if, beyond performance and area, we also consider extra metrics like performance and area efficiency, where the designer tries to design the architecture with the best performance per chip area and the best sustainable performance. In this paper we present an algorithm-oriented approach to design a many-core architecture. Instead of doing the design space exploration of the many core architecture based on the experimental execution results of a particular benchmark of algorithms, our approach is to make a formal analysis of the algorithms considering the main architectural aspects and to determine how each particular architectural aspect is related to the performance of the architecture when running an algorithm or set of algorithms. The architectural aspects considered include the number of cores, the local memory available in each core, the communication bandwidth between the many-core architecture and the external memory and the memory hierarchy. To exemplify the approach we did a theoretical analysis of a dense matrix multiplication algorithm and determined an equation that relates the number of execution cycles with the architectural parameters. Based on this equation a many-core architecture has been designed. The results obtained indicate that a 100 mm(2) integrated circuit design of the proposed architecture, using a 65 nm technology, is able to achieve 464 GFLOPs (double precision floating-point) for a memory bandwidth of 16 GB/s. This corresponds to a performance efficiency of 71 %. Considering a 45 nm technology, a 100 mm(2) chip attains 833 GFLOPs which corresponds to 84 % of peak performance These figures are better than those obtained by previous many-core architectures, except for the area efficiency which is limited by the lower memory bandwidth considered. The results achieved are also better than those of previous state-of-the-art many-cores architectures designed specifically to achieve high performance for matrix multiplication.
Resumo:
The iterative simulation of the Brownian bridge is well known. In this article, we present a vectorial simulation alternative based on Gaussian processes for machine learning regression that is suitable for interpreted programming languages implementations. We extend the vectorial simulation of path-dependent trajectories to other Gaussian processes, namely, sequences of Brownian bridges, geometric Brownian motion, fractional Brownian motion, and Ornstein-Ulenbeck mean reversion process.
Resumo:
This work reports a theoretical study aimed to identify the plasmonic resonance condition for a system formed by metallic nanoparticles embedded in an a-Si: H matrix. The study is based on a Tauc-Lorentz model for the electrical permittivity of a-Si: H and a Drude model for the metallic nanoparticles. It is calculated the The polarizability of an sphere and ellipsoidal shaped metal nanoparticles with radius of 20 nm. We also performed FDTD simulations of light propagation inside this structure reporting a comparison among the effects caused by a single nanoparticles of Aluminium, Silver and, as a comparison, an ideally perfectly conductor. The simulation results shows that is possible to obtain a plasmonic resonance in the red part of the spectrum (600-700 nm) when 20-30 nm radius Aluminium ellipsoids are embedded into a-Si: H.