918 resultados para Stochastic PDE
Resumo:
We consider an inversion-based neurocontroller for solving control problems of uncertain nonlinear systems. Classical approaches do not use uncertainty information in the neural network models. In this paper we show how we can exploit knowledge of this uncertainty to our advantage by developing a novel robust inverse control method. Simulations on a nonlinear uncertain second order system illustrate the approach.
Resumo:
We introduce a technique for quantifying and then exploiting uncertainty in nonlinear stochastic control systems. The approach is suboptimal though robust and relies upon the approximation of the forward and inverse plant models by neural networks, which also estimate the intrinsic uncertainty. Sampling from the resulting Gaussian distributions of the inversion based neurocontroller allows us to introduce a control law which is demonstrably more robust than traditional adaptive controllers.
Resumo:
We introduce a novel inversion-based neuro-controller for solving control problems involving uncertain nonlinear systems that could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. In this work a novel robust inverse control approach is obtained based on importance sampling from these distributions. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The performance of the new algorithm is illustrated through simulations with example systems.
Resumo:
The paper examines howfar foreign manufacturing investment in UK industries, together with the spatial agglomeration of those industries, affect technical efficiency. The paper links research on the estimation of technical efficiency,with those literatures demonstrating the economies associated with foreign direct investment and spatial agglomeration. The methodology involves estimation of a stochastic production frontier with random components associated with industry technical inefficiency, and a standard error. The paper also explores whether the degree of foreign involvement has a greater impact on technical efficiency where the domestic industry sector is characterized by comparatively high productivity and spatial agglomeration. The policy implications of the analysis are discussed.
Resumo:
Recently, Drǎgulescu and Yakovenko proposed an analytical formula for computing the probability density function of stock log returns, based on the Heston model, which they tested empirically. Their research design inadvertently favourably biased the fit of the data to the Heston model, thus overstating their empirical results. Furthermore, Drǎgulescu and Yakovenko did not perform any goodness-of-fit statistical tests. This study employs a research design that facilitates statistical tests of the goodness-of-fit of the Heston model to empirical returns. Robustness checks are also performed. In brief, the Heston model outperformed the Gaussian model only at high frequencies and even so does not provide a statistically acceptable fit to the data. The Gaussian model performed (marginally) better at medium and low frequencies, at which points the extra parameters of the Heston model have adverse impacts on the test statistics. © 2005 Taylor & Francis Group Ltd.
Resumo:
This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.
Resumo:
In recent work we have developed a novel variational inference method for partially observed systems governed by stochastic differential equations. In this paper we provide a comparison of the Variational Gaussian Process Smoother with an exact solution computed using a Hybrid Monte Carlo approach to path sampling, applied to a stochastic double well potential model. It is demonstrated that the variational smoother provides us a very accurate estimate of mean path while conditional variance is slightly underestimated. We conclude with some remarks as to the advantages and disadvantages of the variational smoother. © 2008 Springer Science + Business Media LLC.
Resumo:
Stochastic differential equations arise naturally in a range of contexts, from financial to environmental modeling. Current solution methods are limited in their representation of the posterior process in the presence of data. In this work, we present a novel Gaussian process approximation to the posterior measure over paths for a general class of stochastic differential equations in the presence of observations. The method is applied to two simple problems: the Ornstein-Uhlenbeck process, of which the exact solution is known and can be compared to, and the double-well system, for which standard approaches such as the ensemble Kalman smoother fail to provide a satisfactory result. Experiments show that our variational approximation is viable and that the results are very promising as the variational approximate solution outperforms standard Gaussian process regression for non-Gaussian Markov processes.
Resumo:
The identification of disease clusters in space or space-time is of vital importance for public health policy and action. In the case of methicillin-resistant Staphylococcus aureus (MRSA), it is particularly important to distinguish between community and health care-associated infections, and to identify reservoirs of infection. 832 cases of MRSA in the West Midlands (UK) were tested for clustering and evidence of community transmission, after being geo-located to the centroids of UK unit postcodes (postal areas roughly equivalent to Zip+4 zip code areas). An age-stratified analysis was also carried out at the coarser spatial resolution of UK Census Output Areas. Stochastic simulation and kernel density estimation were combined to identify significant local clusters of MRSA (p<0.025), which were supported by SaTScan spatial and spatio-temporal scan. In order to investigate local sampling effort, a spatial 'random labelling' approach was used, with MRSA as cases and MSSA (methicillin-sensitive S. aureus) as controls. Heavy sampling in general was a response to MRSA outbreaks, which in turn appeared to be associated with medical care environments. The significance of clusters identified by kernel estimation was independently supported by information on the locations and client groups of nursing homes, and by preliminary molecular typing of isolates. In the absence of occupational/ lifestyle data on patients, the assumption was made that an individual's location and consequent risk is adequately represented by their residential postcode. The problems of this assumption are discussed, with recommendations for future data collection.
Resumo:
This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein–Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.
Resumo:
In this paper we present a novel method for emulating a stochastic, or random output, computer model and show its application to a complex rabies model. The method is evaluated both in terms of accuracy and computational efficiency on synthetic data and the rabies model. We address the issue of experimental design and provide empirical evidence on the effectiveness of utilizing replicate model evaluations compared to a space-filling design. We employ the Mahalanobis error measure to validate the heteroscedastic Gaussian process based emulator predictions for both the mean and (co)variance. The emulator allows efficient screening to identify important model inputs and better understanding of the complex behaviour of the rabies model.
Resumo:
We investigate the integration of the European peripheral financial markets with Germany, France, and the UK using a combination of tests for structural breaks and return correlations derived from several multivariate stochastic volatility models. Our findings suggest that financial integration intensified in anticipation of the Euro, further strengthened by the EMU inception, and amplified in response to the 2007/2008 financial crisis. Hence, no evidence is found of decoupling of the equity markets in more troubled European countries from the core. Interestingly, the UK, despite staying outside the EMU, is not worse integrated with the GIPSI than Germany or France. © 2013 Elsevier B.V.