958 resultados para Stabilized-zirconia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel wet-chemical precipitation method is optimized for the synthesis of ZnS nanocrystals doped with Cu+ and halogen. The nanoparticles were stabilized by capping with polyvinyl pyrrolidone (PVP). XRD studies show the phase singularity of ZnS particles having zinc-blende (cubic) structure. TEM as well as XRD line broadening indicate that the average crystallite size of undoped samples is similar to2 nm. The effects of change in stoichiometry and doping with Cu+ and halogen on the photoluminescence properties of ZnS nanophosphors have been investigated. Sulfur vacancy (Vs) related emission with peak maximum at 434 nm has been dominant in undoped ZnS nanoparticles. Unlike in the case of microcrystalline ZnS phosphor, incorporation of halogens in nanoparticles did not result V-Zn related self-activated emission. However, emission characteristics of nanophosphors have been changed with Cu+ activation due to energy transfer from vacancy centers to dopant centers. The use of halogen as co-activator helps to increase the solubility of Cu+ ions in ZnS lattice and also enhances the donor-acceptor type emission efficiency. With increase in Cu+ doping, Cu-Blue centers (CuZn-Cui+), which were dominant at low Cu+ concentrations, has been transformed into Cu-Green (Cu-Zn(-)) centers and the later is found to be situated near the surface regions of nanoparticles. From these studies we have shown that, by controlling the defect chemistry and suitable doping, photoluminescence emission tunability over a wide wavelength range, i.e., from 434 to 514 nm, can be achieved in ZnS nanophosphors. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Size and strain rate effects are among several factors which play an important role in determining the response of nanostructures, such as their deformations, to the mechanical loadings. The mechanical deformations in nanostructure systems at finite temperatures are intrinsically dynamic processes. Most of the recent works in this context have been focused on nanowires [1, 2], but very little attention has been paid to such low dimensional nanostructures as quantum dots (QDs). In this contribution, molecular dynamics (MD) simulations with an embedded atom potential method(EAM) are carried out to analyse the size and strain rate effects in the silicon (Si) QDs, as an example. We consider various geometries of QDs such as spherical, cylindrical and cubic. We choose Si QDs as an example due to their major applications in solar cells and biosensing. The analysis has also been focused on the variation in the deformation mechanisms with the size and strain rate for Si QD embedded in a matrix of SiO2 [3] (other cases include SiN and SiC matrices).It is observed that the mechanical properties are the functions of the QD size, shape and strain rate as it is in the case for nanowires [2]. We also present the comparative study resulted from the application of different EAM potentials in particular, the Stillinger-Weber (SW) potential, the Tersoff potentials and the environment-dependent interatomic potential (EDIP) [1]. Finally, based on the stabilized structural properties we compute electronic bandstructures of our nanostructures using an envelope function approach and its finite element implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The title compound, C(14)H(21)Br(2)N(2)(+)center dot C(7)H(7)O(3)S, features a salt of protonated bromhexine, a pharmaceutical used in the treatment of respiratory disorders, and the p-toluenesulfonate anion. The crystal packing is stabilized by intermolecular N-H center dot center dot center dot O, N-H center dot center dot center dot Br and C-H center dot center dot center dot O hydrogen bonds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the title racemic compound, C(26)H(32)N(2)O(3), an intramolecular O-H center dot center dot center dot N hydrogen bond is formed between the phenolic OH group and the tertiary amine N atom. Another O-H center dot center dot center dot N hydrogen bond that is formed between the OH group and the pyridine N atom links the molecules into a polymeric chain extending along the a axis. The structure is further stabilized by intramolecular and intermolecular C-H center dot center dot center dot O interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The beta-hydroxyacyl-acyl carrier protein dehydratase of Plasmodium falciparum (PfFabZ) catalyzes the third and important reaction of the fatty acid elongation cycle. The crystal structure of PfFabZ is available in hexameric (active) and dimeric (inactive) forms. However, PfFabZ has not been crystallized with any bound inhibitors until now. We have designed a new condition to crystallize PfFabZ with its inhibitors bound in the active site, and determined the crystal structures of four of these complexes. This is the first report on any FabZ enzyme with active site inhibitors that interact directly with the catalytic residues. Inhibitor binding not only stabilized the substrate binding loop but also revealed that the substrate binding tunnel has an overall shape of ``U''. In the crystal structures, residue Phe169 located in the middle of the tunnel was found to be in two different conformations, open and closed. Thus, Phe169, merely by changing its side chain conformation, appears to be controlling the length of the tunnel to make it suitable for accommodating longer substrates. The volume of the substrate binding tunnel is determined by the sequence as well as by the conformation of the substrate binding loop region and varies between organisms for accommodating fatty acids of different chain lengths. This report on the crystal structures of the complexes of PfFabZ provides the structural basis of the inhibitory mechanism of the enzyme that could be used to improve the potency of inhibitors against an important component of fatty acid synthesis common to many infectious organisms. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of homogeneity in ex situ grown conductive coatings and dimensionality in the lithium storage properties of TiO(2) is discussed here. TiO(2) nanotube and nanosheet comprising of mixed crystallographic phases of anatase and TiO(2) (B) have been synthesized by an optimized hydrothermal method. Surface modifications of TiO(2) nanotube are realized via coating the nanotube with Ag nanoparticles and amorphous carbon. The first discharge cycle capacity (at current rate = 10 mA g(-1)) for TiO(2) nanotube and nanosheet were 355 mAh g(-1) and 225 mAhg(-1), respectively. The conductive surface coating stabilized the titania crystallographic structure during lithium insertion-deinsertion processes via reduction in the accessibility of lithium ions to the trapping sites. The irreversible capacity is beneficially minimized from 110 mAh g(-1) for TiO(2) nanotubes to 96 mAh g(-1) and 57 mAhg(-1) respectively for Ag and carbon modified TiO(2) nanotubes. The homogeneously coated amorphous carbon over TiO(2) renders better lithium battery performance than randomly distributed Ag nanoparticles coated TiO(2) due to efficient hopping of electrons. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multi-domain proteins have many advantages with respect to stability and folding inside cells. Here we attempt to understand the intricate relationship between the domain-domain interactions and the stability of domains in isolation. We provide quantitative treatment and proof for prevailing intuitive ideas on the strategies employed by nature to stabilize otherwise unstable domains. We find that domains incapable of independent stability are stabilized by favourable interactions with tethered domains in the multi-domain context. Stability of such folds to exist independently is optimized by evolution. Specific residue mutations in the sites equivalent to inter-domain interface enhance the overall solvation, thereby stabilizing these domain folds independently. A few naturally occurring variants at these sites alter communication between domains and affect stability leading to disease manifestation. Our analysis provides safe guidelines for mutagenesis which have attractive applications in obtaining stable fragments and domain constructs essential for structural studies by crystallography and NMR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

he thermodynamic properties of the spinel Mg2SnO4 have been determined by emf measurements on the solid oxide galvanic cell,View the MathML source in the temperature range 600 to 1000°C. The Gibbs' free energy of formation of Mg2SnO4 from the component oxides can be expressed as View the MathML source,View the MathML source These values are in good agreement with the information obtained by Jackson et al. [Earth Planet. Sci. Lett.24, 203 (1974)] on the high pressure decomposition of magnesium stannate into component oxides at different temperatures. The thermodynamic data suggest that the spinel phase is entropy stabilized, and would be unstable below 207 (±25)°C at atmospheric pressure. Based on the information obtained in this study and trends in the stability of aluminate and chromite spinels, it can be deduced that the stannates of nickel and copper(II) are unstable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vapor pressure of pure indium, and the sum of the pressures of (In) and (In2O) species over the condensed phase mixture {In} + 〈MgIn2O4〉 + 〈MgO〉, have been measured by the Knudsen effusion technique in the temperature range 1095–1350 K. The materials under study were contained in a zirconia crucible, which had a Knudsen orifice along the vertical wall. The major vapor species over the condensed phase mixture were identified as (In) and (In2O) using a mass-spectrometer. The vapor pressure of (In2O) corresponding to the reaction,View the MathML source was deduced from the experimental results;View the MathML source The standard free energy of formation of the inverse spinel 〈MgIn2O4〉 from its component oxides, is given by,View the MathML source View the MathML source The entropy of transformation of 〈In2O3〉 from the C rare-earth structure to the corundum structure is evaluated from the measured entropy of formation of (MgIn2O4) and a semi-empirical correlation for the entropy of formation of spinel phases from component oxides with rock-salt and corundum structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activities in the PbO-PbSO4 melts at 1253 K have been measured by emf and gas-equilibration techniques. The activity of PbO was directly obtained from the emf of the solid oxide cell, Pt, Ni-NiO/CaO-ZrO2/Auo.92PbO.08, PbOx-PbSO4(1-x), Ir, Pt for 1.0 >XPbO > 0.6. The melt and the alloy were contained in closed zirconia crucibles. Since the partial pressure of SO2 gas in equilibrium with the melt and alloy was appreciable (>0.08 atm) atXPbO < 0.6, activities at lower PbO concentrations were derived from measurements of the weight gain of pure PbO under controlled gas streans of Ar + SO2 + O2. The partial and integral free energies of mixing at 1253 K were calculated and found to fit a subregular model: ΔGEPbO =X2PbSO4 {-42,450 + 20,000X2PbSO4} J mol-1 ΔGEPbO =X2pbSO {-12,450 - 20,000XPbS} J mol-1 ΔGEpbSOXPbSO4 {-32,450XPbS - 22,450XPbSO4 } J mol-1. The standard free energy of formation of liquid PbSO4 from pure liquid PbO and gaseous SO3 at 1 atm at 1253 K was evaluated as -88.02 (±0.72) kJ mol-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solubility limit of oxygen in liquid antimony has been measured by a novel isopiestic technique in the temperature range 995--1175 deg K. The results can be expressed by the equation log c = --5500/T + 3.754 ( plus/minus 0.04) with c in at.% O and T in deg K. The oxygen potential over Sb + O alloys equilibrium with Sb2O3 has been measured by a solid state cell using a fully stabilized CaO.ZrO2 electrolyte. The cell was designed to contain the Sb + Sb2O3 mixture in a closed volume, that the vaporization of the oxide can be minimized and true equilibrium attained. The Gibbs free energy of the reaction 2 Sb(s) + 3/2 O2 = Sb2O3(s) is Delta G deg = --719560 + 274.51 T( plus/minus 500) and Sb(l) + 3/2 O2 = Sb2O3(l), Delta G deg = --704711 + ( plus/minus 500) ( Delta G deg in J/mole, T in deg K). The combination of these results with Sieverts' law yields the standard free energy of solution of oxygen in liquid antimony according to the reaction 1/2 O2 = \O\Sb,at.% as Delta G deg = --129620 + 14.23 T ( plus/minus 950). The standard enthalopy and entropy of the solution of oxygen in Sb are compared with values for other metal- oyxgen systems, and with the standard enthalpies of formation of corresponding oxides. The resulting correlations permit the estimation of the standard free energy of solution of oxygen in pure metals for which experimental information is lacking. 24 ref.--AA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phase diagram of the Cr-W-O system at 1000° C was established by metallographic and X-ray identification of the phases present after equilibration in evacuated silica capsules. Two ternary oxide phases, CrWO4 and Cr2WO6 were detected. The oxygen potential over the three-phase mixtures, W+Cr2O3 s+CrWO4, WO2.90+CrWO4+Cr2WO6 and Cr2O3+CrWO4+Cr2WO6, were measured by solid state cells incorporating Y2O3 stabilized ZrO2 electrolyte and Ni+NiO reference electrode. The Gibbs' energies of formation of the two ternary phases can be represented by the following equations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel pentameric structure which differs from the previously reported tetrameric form of the diarrhea-inducing region of the rotavirus enterotoxin NSP4 is reported here. A significant feature of this pentameric form is the absence of the calcium ion located in the core region of the tetrameric structures. The lysis of cells, the crystallization of the region spanning residues 95 to 146 of NSP4 (NSP4(95-146)) of strain ST3 (ST3: NSP4(95-146)) at acidic pH, and comparative studies of the recombinant purified peptide under different conditions by size-exclusion chromatography (SEC) and of the crystal structures suggested pH-, Ca(2+)-, and protein concentration-dependent oligomeric transitions in the peptide. Since the NSP4(95-146) mutant lacks the N-terminal amphipathic domain (AD) and most of the C-terminal flexible region (FR), to demonstrate that the pentameric transition is not a consequence of the lack of the N- and C-terminal regions, glutaraldehyde cross-linking of the Delta N72 and Delta N94 mutant proteins, which contain or lack the AD, respectively, but possess the complete C-terminal FR, was carried out. The results indicate the presence of pentamers in preparations of these longer mutants. Detailed SEC analyses of Delta N94 prepared under different conditions, however, revealed protein concentration-dependent but metal ion-and pH-independent pentamer accumulation at high concentrations which dissociated into tetramers and lower oligomers at low protein concentrations. While calcium appeared to stabilize the tetramer, magnesium in particular stabilized the dimer. Delta N72 existed primarily in the multimeric form under all conditions. These findings of a calcium-free NSP4 pentamer and its concentration-dependent and largely calcium-independent oligomeric transitions open up a new dimension in an understanding of the structural basis of its multitude of functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundamental studies on a compact trapped vortex combustor indicate that cavity injection strategies play a major role on flame stability. Detailed experiments indicate that blow-out occurs for a certain range of cavity air flow velocities. An unsteady RANS-based reacting flow simulation tool has been utilized to study the basic dynamics of cavity vortex for various flow conditions. The phenomenon of flame blow-out at certain intermediate cavity air velocities is explained on the basis of transition from a cavity-stabilized mode to an opposed flow stagnation mode. A novel strategy is proposed for achieving flame stability at all conditions. This involves using a flow guide vane in the path of the main flow to direct a portion of the main flow into the cavity. This seems to result in a desirable dual vortex structure, i.e., a small clockwise vortex behind the vane and large counterclockwise vortex in the cavity. Experimental results show stable flame at all flow conditions with the flow guide vane, and pressure drop is estimated to be within acceptable limits. Cold flow simulations show self-similar velocity profiles for a range of main inlet velocities, and high reverse velocity ratios (-0.3) are observed. Such a high-velocity ratio in the reverse flow shear layer profile leads to enhanced production of turbulence imperative to compact combustors. Reacting flow simulations show even higher reverse velocity ratios (above -0.7) due to flow acceleration. The flame is observed to be stable, even though minor shear layer oscillations are present in the form of vortex shedding. Self-similarity is also observed in reacting flow temperature profiles at combustor exit over the entire range of the mainstream velocity. This indicates that the present configuration holds a promise of delivering robust performance invariant of the flow operating conditions.