924 resultados para Spores germination
Resumo:
Seeds of carrot, groundnut, lettuce, oilseed rape and onion were stored hermetically in laminated aluminium foil packets in four environments (dry or ultra-dry moisture contents combined factorially with temperatures of 20 degrees C or -20 degrees C), replicated at several sites. After ten years' hermetic storage, seed moisture content, equilibrium relative humidity, viability (assessed by ability to germinate normally in standard germination tests) and vigour were determined. After a decade, the change in seed moisture content of samples stored at -20 degrees C was small or nil. Except for groundnut and lettuce (where loss in viability was about 8 and 3%, respectively), no loss in viability was detected after 10 years' hermetic storage at -20 degrees C. In all cases, there was no difference in seed survival between moisture contents at this temperature (P > 0.25). Comparison of seed vigour (root length and rate of germination) also confirmed that drying to moisture contents in equilibrium with 10-12% r.h. had no detrimental effect to longevity when stored at -20 degrees C: the only significant (P < 0.05) differences detected were slightly greater root lengths for ultra-dry storage of four of the six seed lots. Seed moisture content had increased after a decade at 20 degrees C (generally to the level in equilibrium with ambient relative humidity). Hence, sub-zero temperature storage helped maintain the long-term integrity of the laminated aluminium foil packets, as well as that of the seeds within.
Resumo:
It has been observed in the present study that when spores of Trichoderma harzianum (Th-2) isolate were applied in the sandy clay loam soil and continuously incubated for 4 months at 25 degrees C and 35 degrees C and at three water potentials, -0.03 MPa, -0.3 MPa and <-50 MPa, it has resulted in significantly reduced (P<0.05), growth of Fusarium oxysporum ciceri (Foc) on branches of chickpea plant. The pathogen population was greatly reduced in the moist soil (43 MPa) when compared with the wet soil (-0.03 MPa) at both temperatures which was indicated by greater colonization and growth of T. harzanum-2 on the branch pieces of chickpea plants. The pathogen was completely eradicated from the chickpea branch pieces, after 6 months at 35 degrees C in the moist soil. In air-dry soil (<-50 MPa), Foc survived in 100% of the branch pieces even after 6 months at both temperatures. When chickpea plant branch pieces having pathogen was sprayed with Th-2 antagonistic isolates of Trichoderma spp., the Th-2 isolate killed the pathogen up to minimum level (10-12%) after 5 months at 35 degrees C in the sandy clay loam soil. It can be concluded that in chickpea growing rainfed areas of Pakistan having sandy clay loam soil, Foc can be controlled by using specific Trichoderma spp., especially in the summer season as after harvest of the crop the temperature increased up and there is rainfall during this period which makes the soil moist. This practice will be able to reduce the inoculum of Foc during this hot period as field remain fallow till next crop is sown in most of the chickpea growing rainfed areas of Pakistan.
Resumo:
Initial applications of 10(4) spores g(-1) of Pasteuria penetrans, and dried neem cake and leaves at 3 and 2% w:w, respectively, were applied to soil in pots. Juveniles of Meloidogyne javanica were added immediately to the pots (500, 5,000 or 10,000) before planting 6-week-old tomato seedlings. The tomatoes were sampled after 64 days; subsequently a second crop was grown for 59 days and a third crop for 67 days without further applications of P. penetrans and neem. There was significantly less root-galling in the P. penetrans combined with neem cake treatment at the end of the third crop and this treatment also had the greatest effect on the growth of the tomato plants. At the end of the third crop, 30% of the females were infected with P. penetrans in those treatments where spores had been applied at the start of the experiment. The effects of neem leaves and neem cake on the nematode population did not persist through the crop sequences but the potential for combining the amendments with a biological control agent such as P. penetrans is worthy of further evaluation.
Resumo:
Field experiments were carried out to assess the effects of nitrogen fertilization and seed rate on the Hagberg falling number (HFN) of commercial wheat hybrids and their parents. Applying nitrogen (200 kg N ha(-1)) increased HFN in two successive years. The HFN of the hybrid Hyno Esta was lower than either of its parents (Estica and Audace), particularly when nitrogen was not applied. Treatment effects on HFN were negatively associated with a-amylase activity. Phadebas grain blotting suggested two populations of grains with different types of a-amylase activity: Estica appeared to have a high proportion of grains with low levels of late maturity endosperm a-amylase activity (LMEA); Audace had a few grains showing high levels of germination amylase; and the hybrid, Hyno Esta, combined the sources from both parents to show heterosis for a-amylase activity. Applying nitrogen reduced both apparent LMEA and germination amylase. The effects on LMEA were associated with the size and disruption of the grain cavity, which was greater in Hyno Esta and Estica and in zero-nitrogen treatments. External grain morphology failed to explain much of the variation in LMEA and cavity size, but there was a close negative correlation between cavity size and protein content. Applying nitrogen increased post-harvest dormancy of the grain. Dormancy was greatest in Estica and least in Audace. It is proposed that effects of seed rate, genotype and nitrogen fertilizer on HFN are mediated through factors affecting the size and disruption of the grain cavity and therefore LMEA, and through factors affecting dormancy and therefore germination amylase. (c) 2004 Society of Chemical Industry.
Resumo:
In the hot and dry conditions in which seeds of the tree legume Peltophorum pterocarpum develop and mature in Vietnam, seed moisture content declined rapidly on the mother plant from 87% at 42 d after flowering (DAF) to 15% at 70 DAF. Dry weight of the pods attained a maximum value at about 42 DAF, but seed mass maturity (i.e. the end of the seed-filling phase) occurred at about 62 DAF, at which time seed moisture content was about 45-48%. The onset of the ability of freshly collected seeds to germinate (in 63-d tests at 28-34degreesC) occurred at 42 DAF, i.e. about 20 d before mass maturity. Full germination (98%) was attained at 70 DAF, i.e. at about 8 d after mass maturity. Thereafter, germination of fresh seeds declined, due to the imposition of a hard seed coat. Tolerance of desiccation to 10% moisture content was first detected at 56 DAF and was complete within the seed population by 84 DAF, i.e. about 22 d after mass maturity. Hardseededness began to be induced when seeds were dried to about 15% moisture content and below, with a negative logarithmic relation between hardseededness and moisture content below this value.
Resumo:
Mass maturity (end of the seed-filling phase) occurred at about 72 days after flowering (DAF) in developing seeds of Mimusops elengi, at which time seed moisture content had declined to about 55%. The onset of ability to germinate was detected at 56 DAF and seeds showed 98% germination by 84 DAF. Tolerance of desiccation to 10% moisture content was first detected at 70 DAF and was maximal by 84 DAF. Delaying collection by a further 14 days to 98 DAF, when fruits began to be shed, reduced seed viability, particularly for seeds first dried to 10% moisture content. Hence the best time for seed collection appears to be about 14 days before fruits shed. In a separate investigation with six different seed lots, desiccation below about 8-12% moisture content reduced viability (considerably in some lots). The viability of dry seeds (below about 10% moisture content) stored hermetically was reduced at cool temperatures (5 degrees C and below), and none survived storage at sub-zero temperatures. The results suggest that Mimusops elengi shows intermediate seed storage behaviour and that the optimal hermetic seed storage environment is about 10% moisture content at 10 degrees C, while short-term, moist, aerated storage at high (40%) moisture content is also feasible.
Resumo:
Seed of 15 species of Brassicaceae were stored hermetically in a genebank (at -5 degrees C to -10 degrees C with c. 3% moisture content) for 40 years. Samples were withdrawn at intervals for germination tests. Many accessions showed an increase in ability to germinate over this period. due to loss in dormancy. Nevertheless, some dormancy remained after 40 years' storage and was broken by pre-applied gibberellic acid. The poorest seed survival occurred in Hormatophylla spinosa. Even in this accession the ability to germinate declined by only 7% between 1966 and 2006. Comparison of seeds from 1966 stored for 40 years with those collected anew in 2006 from the original sampling sites, where possible, showed few differences, other than a tendency (7 of 9 accessions) for the latter to show greater dormancy. These results for hermetic storage at sub-zero temperatures and low moisture contents confirm that long-term seed storage can provide a successful technology for ex situ plant biodiversity conservation.
Resumo:
The level of Pasteuria penetrans spore attachment on juveniles of Meloidogyne javanica, M. incognita and M. arenaria was greater when the nematodes were exposed to spores of a population that had been multiplied on a mixture of these Meloidogyne species than where Pasteuria was multiplied on a single nematode population. When tomato plants were inoculated with M. javanica, M. incognita and M. arenaria juveniles encumbered with spores produced on different Meloidogyne species, tile incidence of root galling and productivity of egg-masses were less, and this was also reflected in increased infection of females of M. javanica, M. incognita and M. arenaria compared to the infection by Pasteuria populations produced on single nematode species and therefore assumed to have a narrower genetic base.
Resumo:
Dormancy is an adaptive trait in seed populations that helps ensure that seed germination is distributed over time and occurs in environmental conditions suitable for seedling growth. Several genes.. associated with seed dormancy in various plant species, have been integrated into a hypothetical dormancy model for Avena fatua L. (wild oats). Generally, the synthesis of, and sensitivity to, abscisic acid (ABA) during imbibition determines whether genes similar to those during maturation are expressed leading to a maintenance of dormancy during extended imbibition. Alternatively, there may be a shift towards expression of genes associated with gibberellins leading to germination. Environmental factors during maturation, after-ripening and imbibition are likely to interact with the genotype to affect gene expression and hence whether or not a seed germinates. In spite of the difficulties of working on a hexaploid species, A. fatua was selected for study because of its worldwide importance as a weed. Dormant and non-dormant genotypes of this species were also available. Gene expression studies are being carried out on three A.fatua genotypes produced tinder different environmental conditions to investigate the role of specific genes in dormancy and genotype X environment interactions in relation to dormancy.
Resumo:
We have obtained a single spore isolate of Pasteuria penetrans, derived by allowing a single spore to attach to a second-stage juvenile (J2) of the root-knot nematode Meloidogyne javanica. By analysing DNA sequences at three different loci we have obtained evidence that the isolate is, indeed, genetically pure. We compared the ability of the single spore isolate and the parent population from which it was selected to attach to and parasitise both the original population of M. javanica on which it was isolated and a single egg mass line derived from it. There was no difference in the attachment of spores of the single spore isolate to juveniles compared to the parental population, although there were higher numbers of both attaching to J2 of the single egg mass line compared to its parental population. Judging from the numbers of egg masses and Pasteuria-infected females, the single spore isolate was less pathogenic to the parental population of M. javanica than was the parental spore population.
Resumo:
A size-structured plant population model is developed to study the evolution of pathogen-induced leaf shedding under various environmental conditions. The evolutionary stable strategy (ESS) of the leaf shedding rate is determined for two scenarios: i) a constant leaf shedding strategy and ii) an infection load driven leaf shedding strategy. The model predicts that ESS leaf shedding rates increase with nutrient availability. No effect of plant density on the ESS leaf shedding rate is found even though disease severity increases with plant density. When auto-infection, that is increased infection due to spores produced on the plant itself, plays a key role in further disease increase on the plant, shedding leaves removes disease that would otherwise contribute to disease increase on the plant itself. Consequently leaf shedding responses to infections may evolve. When external infection, that is infection due to immigrant spores, is the key determinant, shedding a leaf does not reduce the force of infection on the leaf shedding plant. In this case leaf shedding will not evolve. Under a low external disease pressure adopting an infection driven leaf shedding strategy is more efficient than adopting a constant leaf shedding strategy, since a plant adopting an infection driven leaf shedding strategy does not shed any leaves in the absence of infection, even when leaf shedding rates are high. A plant adopting a constant leaf shedding rate sheds the same amount of leaves regardless of the presence of infection. Based on the results we develop two hypotheses that can be tested if the appropriate plant material is available.
Resumo:
To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity. Molecular & Cellular Proteomics 8: 2368-2381, 2009.
Resumo:
A detached leaf bioassay was used to determine the influence of several film forming polymers and a conventional triazole fungicide on apple scab (Venturia inaequalis (Cooke) G. Wint.) development under laboratory in vitro conditions, supported by two field trials using established apple cv. Golden Delicious to further assess the efficacy of foliar applied film forming polymers as scab protectant compounds. All film forming polymers used in this investigation (Bond, Designer, Nu-Film P, Spray Gard, Moisturin, Companion PCT12) inhibited germination of conidia, subsequent formation of appressoria and reduced leaf scab severity using a detached leaf bioassay. Regardless of treatment, there were no obvious trends in the percentage of conidia with one to four appressoria 5 days after inoculation. The synthetic fungicide penconazole resulted in the greatest levels of germination inhibition, appressorium development and least leaf scab severity. Under field conditions, scab severity on leaves and fruit of apple cv. Golden Delicious treated with a film forming polymer (Bond, Spray Gard, Moisturin) was less than on untreated controls. However, greatest protection in both field trials was provided by the synthetic fungicide penconazole. Higher chlorophyll fluorescence Fv/Fm emissions in polymer and penconazole treated trees indicated less damage to the leaf photosynthetic system as a result of fungal invasion. In addition, higher SPAD values as measures of leaf chlorophyll content were recorded in polymer and penconazole treated trees. Application of a film forming polymer or penconazole resulted in a higher apple yield per tree at harvest in both the 2005 and 2006 field trials compared to untreated controls. Results suggest application of an appropriate film forming polymer may provide a useful addition to existing methods of apple scab management. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The myxozoan, Tetracapsuloides bryosalmonae, exploits freshwater bryozoans as definitive hosts, occurring as cryptic stages in bryozoan colonies during covert infections and as spore-forming sacs during overt infections. Spores released from sacs are infective to salmonid fish, causing the devastating Proliferative Kidney Disease (PKD). We undertook laboratory studies using mesocosm systems running at 10, 14 and 20 degrees C to determine how infection by T bryosalmonae and water temperature influence fitness of one of its most important bryozoan hosts, Fredericella sultana, over a period of 4 weeks. The effects of infection were context-dependent and often undetectable. Covert infections appear to pose very low energetic costs. Thus, we found that growth of covertly infected F. sultana colonies was similar to that of uninfected colonies regardless of temperature, as was the propensity to produce dormant resting stages (statoblasts). Production of statoblasts, however, was associated with decreased growth. Overt infections imposed greater effects on correlates of host fitness by: (i) reducing growth rates at the two higher temperatures: (ii) increasing mortality rates at the highest temperature: (iii) inhibiting statoblast production. Our results indicate that parasitism should have a relatively small effect on host fitness in the field as the negative effects of infection were mainly expressed in environmentally extreme conditions (20 degrees C for 4 weeks). The generally low virulence of T. bryosalmonae is similar to that recently demonstrated for another myxozoan endoparasite of freshwater bryozoans. The unique opportunity for extensive vertical transmission in these colonial invertebrate hosts couples the reproductive interests of host and parasite and may well give rise to the low virulence that characterises these systems. Our study implies that climate change can be expected to exacerbate PKD outbreaks and increase the geographic range of PKD as a result of the combined responses of T. bryosalmonae and its bryozoan hosts to higher temperatures. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
Resumo:
We examine the extent of population-level differentiation in life history traits of Pogonatum aloides, Polytrichum commune and Polytrichum juniperinum (Polytrichaceae) between upland and lowland localities within Britain. Reciprocal transplant studies are used to estimate the relative importance of genetic versus environmental effects on observed differences. We demonstrate significant life history differentiation between moss populations, and show that at least some of these are genetically determined, although environment and phenotypic plasticity are also significant components of the observed variation. The transplant experiments indicate divergence among populations in plasticity of male reproductive effort and of investment in vegetative shoots by females. Two tradeoffs are identified; one between the number and the size of spores, and the second between reproduction by spores versus vegetative reproduction. The patterns of life history variation observed between populations of Polytrichum juniperinum are consistent with selection along these implied tradeoff curves, and we propose that they reflect selective pressures arising from the spatial and demographic distribution of mortality at upland versus lowland sites. The results underscore the need for more studies of intra-specific life history variation in mosses.