952 resultados para Spinal cord ischemia reperfusion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to describe motor behavioral changes in association with histopathological and hematological findings in Wistar rats inoculated intravenously with human T-cell lymphotropic virus type 1 (HTLV-1)-infected MT2 cells. Twenty-five 4-month-old male rats were inoculated with HTLV-1-infected MT2 cells and 13 control rats were inoculated with normal human lymphocytes. The behavior of the rats was observed before and 5, 10, 15, and 20 months after inoculation during a 30-min/rat testing time for 5 consecutive days. During each of 4 periods, a subset of rats was randomly chosen to be sacrificed in order to harvest the spinal cord for histopathological analysis and to obtain blood for serological and molecular studies. Behavioral analyses of the HTLV-1-inoculated rats showed a significant decrease of climbing, walking and freezing, and an increase of scratching, sniffing, biting, licking, and resting/sleeping. Two of the 25 HTLV-1-inoculated rats (8%) developed spastic paraparesis as a major behavioral change. The histopathological changes were few and mild, but in some cases there was diffuse lymphocyte infiltration. The minor and major behavioral changes occurred after 10-20 months of evolution. The long-term observation of Wistar rats inoculated with HTLV-1-infected MT2 cells showed major (spastic paraparesis) and minor motor abnormalities in association with the degree of HTLV-1-induced myelopathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common human life-threatening monogenic disorders. The disease is characterized by bilateral, progressive renal cystogenesis and cyst and kidney enlargement, often leading to end-stage renal disease, and may include extrarenal manifestations. ADPKD is caused by mutation in one of two genes, PKD1 and PKD2, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC2 is a non-selective cation channel permeable to Ca2+, while PC1 is thought to function as a membrane receptor. The cyst cell phenotype includes increased proliferation and apoptosis, dedifferentiation, defective planar polarity, and a secretory pattern associated with extracellular matrix remodeling. The two-hit model for cyst formation has been recently extended by the demonstration that early gene inactivation leads to rapid and diffuse development of renal cysts, while inactivation in adult life is followed by focal and late cyst formation. Renal ischemia/reperfusion, however, can function as a third hit, triggering rapid cyst development in kidneys with Pkd1 inactivation induced in adult life. The PC1-PC2 complex behaves as a sensor in the primary cilium, mediating signal transduction via Ca2+ signaling. The intracellular Ca2+ homeostasis is impaired in ADPKD, being apparently responsible for the cAMP accumulation and abnormal cell proliferative response to cAMP. Activated mammalian target for rapamycin (mTOR) and cell cycle dysregulation are also significant features of PKD. Based on the identification of pathways altered in PKD, a large number of preclinical studies have been performed and are underway, providing a basis for clinical trials in ADPKD and helping the design of future trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chagas' myocardiopathy, caused by the intracellular protozoan Trypanosoma cruzi, is characterized by microvascular alterations, heart failure and arrhythmias. Ischemia and arrythmogenesis have been attributed to proteins shed by the parasite, although this has not been fully demonstrated. The aim of the present investigation was to study the effect of substances shed by T. cruzi on ischemia/reperfusion-induced arrhythmias. We performed a triple ischemia-reperfusion (I/R) protocol whereby the isolated beating rat hearts were perfused with either Vero-control or Vero T. cruzi-infected conditioned medium during the different stages of ischemia and subsequently reperfused with Tyrode's solution. ECG and heart rate were recorded during the entire experiment. We observed that triple I/R-induced bradycardia was associated with the generation of auricular-ventricular blockade during ischemia and non-sustained nodal and ventricular tachycardia during reperfusion. Interestingly, perfusion with Vero-infected medium produced a delay in the reperfusion-induced recovery of heart rate, increased the frequency of tachycardic events and induced ventricular fibrillation. These results suggest that the presence of parasite-shed substances in conditioned media enhances the arrhythmogenic effects that occur during the I/R protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myocardial ischemic preconditioning upregulated protein 1 (Mipu1) is a newly discovered upregulated gene produced in rats during the myocardial ischemic preconditioning process. Mipu1 cDNA contains a 1824-base pair open reading frame and encodes a 608 amino acid protein with an N-terminal Krüppel-associated box (KRAB) domain and classical zinc finger C2H2 motifs in the C-terminus. Mipu1 protein is located in the cell nucleus. Recent studies found that Mipu1 has a protective effect on the ischemia-reperfusion injury of heart, brain, and other organs. As a nuclear factor, Mipu1 may perform its protective function through directly transcribing and repressing the expression of proapoptotic genes to repress cell apoptosis. In addition, Mipu1 also plays an important role in regulating the gene expression of downstream inflammatory mediators by inhibiting the activation of activator protein-1 and serum response element.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Bovine Spongiform Encephalopathy (BSE) is a virulent disease which may infect by affecting the central nervous system (CNS) tissues in cattle and causes degeneration in nerves. Central nervous system tissues such as brain and spinal cord which are classified as specified risk materials (SRMs) are regarded to be main source of infection. The contamination of the meat with the specific risk materials (SRMs) can occur in phases of slaughter, fragmentation of carcass and processing. This study was conducted in order to investigate the existence of CNS tissues in raw meat ball (cig kofte) which is commonly consumed in the Southeastern Region of Turkey, particularly in Şanlıurfa. For this purpose, 145 samples of raw meat ball were tested. The enzyme-linked immunosorbent assay (ELISA) kits (Ridascreen risk material 10/5, R-biofarm GmbH) which determine glial fibrillary acidic protein (GFAP) as determinant were used. As a result of the analyses, positivity was detected in 21 of totally 145 samples of raw meat ball (14.48%). 6 (4.14%) of the samples gave low level of positivity (≥ 0.1 standard absorbance), 10 (6.90%) gave medium level of positivity (>0.2 standard absorbance) and 5 (3.45%) gave high level of positivity (≥0.5 standard absorbance). As a consequence, meats are contaminated in any phase of both slaughter and meat production even if accidentally. Regarding this matter, necessary measures should be taken and hygiene rules should be applied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Mesangial cells (MC) may be involved in the glomerular alterations induced by ischemia/reperfusion injury. OBJECTIVE: To evaluate the response of immortalized MC (IMC) to 30 minutes of hypoxia followed by reoxygenation periods of 30 minutes (H/R30) or 24 hours (H/R24). METHODS: The intracellular calcium concentration ([Ca+2]i) was measured before (baseline) and after adding angiotensin II (AII, 10-5 M) in the presence and absence of glybenclamide (K ATP channel blocker). We estimated the level of intracellular ATP, nitric oxide (NO) and PGE2. RESULTS: ATP concentration decreased after hypoxia and increased after reoxygenation. Hypoxia and H/R induced increases in basal [Ca+2]i. AII induced increases in [Ca+2]i in normoxia (97 ± 9%), hypoxia (72 ± 10%) or HR30 (85 ± 17%) groups, but there was a decrease in the response to AII in group H/R24 since the elevation in [Ca+2]i was significantly lower than in control (61 ± 10%, p < 0.05). Glybenclamide did not modify this response. It was observed a significant increase in NO generation after 24 hours of reoxygenation, but no difference in PGE2 production was observed. Data suggest that H/R injury is characterized by increased basal [Ca+2]i and by an impairment in the response of cells to AII. Results suggest that the relative insensibility to AII may be at least in part mediated by NO but not by prostaglandins or vasodilator K ATP channels. CONCLUSION: H/R caused dysfunction in IMC characterized by increases in basal [Ca+2]i during hypoxia and reduction in the functional response to AII during reoxygenation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resveratrol (RESV) is a polyphenolic compound found in various plants, including grapes, berries and peanuts, and its processed foods as red wine. RESV possesses a variety of bioactivities, including antioxidant, anti-inflammatory, cardioprotective, antidiabetic, anticancer, chemopreventive, neuroprotective, renal lipotoxicity preventative, and renal protective effects. Numerous studies have demonstrated that polyphenols promote cardiovascular health. Furthermore, RESV can ameliorate several types of renal injury in animal models, including diabetic nephropathy, hyperuricemic, drug-induced injury, aldosterone-induced injury, ischemia-reperfusion injury, sepsis-related injury, and endothelial dysfunction. In addition, RESV can prevent the increase in vasoconstrictors, such as angiotensin II (AII) and endothelin-1 (ET-1), as well as intracellular calcium, in mesangial cells. Together, these findings suggest a potential role for RESV as a supplemental therapy for the prevention of renal injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between the child's cogni tive development and neurological maturation has been of theoretical interest for many year s. Due to diff iculties such as the lack of sophisticated techniques for measur ing neurolog ical changes and a paucity of normative data, few studies exist that have attempted to correlate the two factors. Recent theory on intellectual development has proposed that neurological maturation may be a factor in the increase of short-term memory storage space. Improved technology has allowed reliable recordings of neurolog ical maturation.. In an attempt to correlate cogni tive development and neurological maturation, this study tested 3-and II-year old children. Fine motor and gross motor short-term memory tests were used to index cogni tive development. Somatosensory evoked potentials elici ted by median nerve stimulation were used to measure the time required for the sensation to pass along the nerve to specific points on the somatosensory pathway. Times were recorded for N14, N20, and P22 interpeak latencies. Maturation of the central nervous system (brain and spinal cord) and the peripheral nervous system (outside the brain and spinal cord) was indi~ated by the recorded times. Signif icant developmental di fferences occurred between 3-and ll-year-olds in memory levels, per ipheral conduction velocity and central conduction times. Linear regression analyses showed that as age increased, memory levels increased and central conduction times decreased. Between the ll-year-old groups, there were no significant differences in central or peripheral nervous system maturation between subjects who achieved a 12 plus score on the digit span test of the WISC-R and those who scored 7 or lower on the same test. Levels achieved on the experimental gross and fine motor short-term memory tests differed significantly within the ll-year-old group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional Electrically Stimulated (FES) ami cycle ergometry is a relatively new technique for exercise in individuals with impairments of the upper limbs. The purpose of this study was to determine the effects of 12 weeks of FES arm cycle ergometry on upper limb function and cardiovascular fitness in individuals with tetraplegia. F!ve subjects (4M/1F; mean age 43.8 ± 15.4 years) with a spinal cord injury of the cervical spine (C3- C7; ASIA B-D) participated in 12 weeks of3 times per week FES arm cycle ergometry training. Exercise performance measures (time to fatigue, distance to fatigue, work rate) were taken at baseline, 6 weeks, and following 12 weeks of training. Cardiovascular measures (MAP, resting HR, average and peak HR during exercise, cardiovascular efficiency) and self reported upper limb function (as determined by the CUE, sf-QIF, SCI-SET questionnaires) were taken at baseline and following 12 weeks of training. Increases were found in time to fatigue (84.4%), distance to fatigue (111.7%), and work rate (51.3%). These changes were non-significant. There was a significant decrease in MAP (91.1 ± 13.9 vs. 87.7 ± 14.7 mmHg) following 12 weeks ofFES arm cycle ergometry. There was no significant change in resting HR or average and peak HR during exercise. Cardiovascular efficiency showed an increase following the 12 weeks ofFES training (142.9%), which was non-significant. There were no significant changes in the measures of upper limb function and spasticity. Overall, FES arm cycle ergometry is an effective method of cardiovascular exercise for individuals with tetraplegia, as evidenced by a significant decrease in MAP, however it is unclear whether 12 weeks of thrice weekly FES arm cycle ergometry may effectively improve upper limb function in all individuals with a cervical SCI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiovascular disease is a leading cause of mortality in the spinal cord injured (SCI) population. Reduced arterial compliance is a cardiovascular risk factor and whole body vibration (WBV) has be en shown to improve arterial compliance in able-bodied individuals. The study investigated the effect of an acute session ofWBV on arterial compliance as measured by pulse wave velocity (PWV). On separate days, arm, leg and aortic PWV were measured pre- and post- a 45 minute session of passive stance (PS) and WBV. The WBV was intermittent with a set frequency of 45Hz and amplitude of O.6mm. There was no condition by time effect when comparing PWV after WBV and PS. Following WBV, aortic (928.6±127.7 vs. 901.1±96.6cm/sec), leg (1035.2±113.8 vs.l099.8±114.2cm/sec) and arm PWV (1118.9±119.8 vs. 1181.1±124.4cm/s) did not change. As such, WBV did not reduce arterial compliance, however future research with protocol modifications is recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vertebrates, signaling by retinoic acid (RA) is known to play an important role in embryonic development, as well as organ homeostasis in the adult. In organisms such as adult axolotls and newts, RA is also important for regeneration of the CNS, limb, tail, and many other organ systems. RA mediates many of its effects in development and regeneration through nuclear receptors, known as retinoic acid receptors (RARs) and retinoid X receptors (RXRs). This study provides evidence for an important role of the RA receptor, RAR~2, in ,( '. regeneration ofthe spinal cord and tail of the adult newt. It has previously been proposed that the ability of the nervous system to regenerate might depend on the presence or absence of this RAR~2 isoform. Here, I show for the very first time, that the regenerating spinal cord of the adult newt expresses this ~2 receptor isoform, and inhibition of retinoid signaling through this specific receptor with a selective antagonist inhibits tail and spinal cord regeneration. This provides the first evidence for a role of this receptor in this process. Another species capable of CNS ~~generation in the adult is the invertebrate, " Lymnaea stagnalis. Although RA has been detected in a small number of invertebrates (including Lymnaea), the existence and functional roles of the retinoid receptors in most invertebrate non-chordates, have not been previously studied. It has been widely believed, however, that invertebrate non-chordates only possess the RXR class of retinoid receptors, but not the RARs. In this study, a full-length RXR cDNA has been cloned, which was the first retinoid receptor to be discovered in Lymnaea. I then went on to clone the very first full-length RAR eDNA from any non-chordate, invertebrate species. The functional role of these receptors was examined, and it was shown that normal molluscan development was altered, to varying degrees, by the presence of various RXR and RAR agonists or antagonists. The resulting disruptions in embryogenesis ranged from eye and shell defects, to complete lysis of the early embryo. These studies strongly suggest an important role for both the RXR and RAR in non-chordate development. The molluscan RXR and RAR were also shown to be expressed in the adult, nonregenerating eNS, as well as in individual motor neurons regenerating in culture. More specifically, their expression displayed a non-nuclear distfibution, suggesting a possible non-genomic role for these 'nuclear' receptors. It was shown that immunoreactivity for the RXR was present in almost all regenerating growth cones, and (together with N. Farrar) it was shown that this RXR played a novel, non-genomic role in mediating growth cone turning toward retinoic acid. Immunoreactivity for the novel invertebrate RAR was also found in the regenerating growth cones, but future work will be required to determine its functional role in nerve cell regeneration. Taken together, these data provide evidence for the importance of these novel '. retinoid receptors in development and regeneration, particularly in the adult nervous system, and the conservation of their effects in mediating RA signaling from invertebrates to vertebrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vitamin A metabolite, retinoic acid (RA), is known to play a crucial role in several developmental processes including axial patterning and differentiation. More recently, RA has been implicated in the regenerative process acting through its classical signaling pathway, the nuclear receptors, retinoic acid receptor (RAR) and retinoid X receptor (RXR), to mediate gene transcription. Moreover, RA has been shown to act as a guidance molecule for growth cones of regenerating motorneurons of the pond snail, Lymnaea stagnalis. Our lab has recently shown that RA can induce this morphological response independent of nuclear transcription, however, the role of the retinoid receptors in RA-induced chemoattraction is still unknown. Here, I show that the retinoid receptors, RXR and RAR, may mediate the growth cones response to the metabolically active retinoic acid isomers, all-trans and 9-cis RA, in Lymnaea stagnalis. Data presented here show that both an RXR and RAR antagonist can block growth cone turning in response to application of both isomers. Because no prior investigations have shown growth cone turning of individual vertebrate neurons, I aimed to show that both retinoic acid isomers were capable of inducing growth cone turning of embryonic spinal cord neurons in the frog, Xenopus laevis. For the first time in Xenopus, I showed that both all-trans and 9-cis RA were able to induce significantly more neurite outgrowth from cultured embryonic spinal cord neurons and induce positive growth cone turning of individual growth cones. In addition, I showed that the presence of the RXR antagonist, HX531, blocked 9-cis RA-induced growth cone turning and the RARβ antagonist, LE135, blocked all-trans RA-induced growth cone turning in this species. Evidence provided here shows for the first time, conservation of retinoic acid-induced growth cone turning in a vertebrate model system. In addition, these data show that the receptors involved in this morphological response may be the same in vertebrates and invertebrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Please consult the paper edition of this thesis to read. It is available on the 5th Floor of the Library at Call Number: Z 9999.5 B56 D64 2007

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les décès attribués à un choc septique à la suite d’une infection sévère augmentent chez les diabétiques et surviennent assez fréquemment dans les unités de soins intensifs. Le diabète sucré et le choc septique augmentent la production d’espèces réactives oxygénées et de cytokines pro-inflammatoires, lesquelles activent le facteur de transcription nucléaire Kappa B conduisant à l’induction du récepteur B1 (RB1) des kinines. Le diabète induit par la streptozotocine (STZ) augmente l’expression du RB1 dans divers tissus périphériques, le cerveau et la moelle épinière. Les lipopolysaccharides bactériens (LPS), souvent utilisés pour induire le choc septique, induisent aussi le RB1. L’objectif de ce travail vise à démontrer la contribution du RB1 des kinines dans l’exacerbation du choc septique pendant le diabète. Des rats Sprague-Dawley (225-250 gr) traités à la STZ (65 mg/kg, i.p.) ou le véhicule ont reçu quatre jours plus tard les LPS (2 mg/kg, i.v.) ou le véhicule en présence ou pas d’un antagoniste du RB1 (SSR240612, 10 mg/kg) administré par gavage. La température corporelle a été mesurée pendant 24h après le traitement. Le SSR240612 a aussi été administré à 9h AM et 9h PM et les rats sacrifiés à 9h AM le jour suivant après un jeûne de 16 h. Les effets de ces traitements ont été mesurés sur les taux plasmatiques d’insuline et de glucose, l’œdème et la perméabilité vasculaire (dans divers tissus avec la technique du Bleu d’Evans) ainsi que sur l’expression du RB1 (PCR en temps réel) dans le cœur et le rein. L’augmentation de la température corporelle après traitement au LPS chez les rats traités ou pas à la STZ a été bloquée par le SSR240612. L’antagoniste a normalisé l’hyperglycémie et amélioré la déficience en insuline chez les rats STZ. Le SSR240612 a inhibé l’œdème et réduit la perméabilité vasculaire dans les tissus des rats diabétiques traités ou pas avec les LPS. La surexpression du RB1 chez les rats traités au STZ et/ou LPS était renversée par le SSR240612. Cet antagoniste a prévenu la mortalité causée par les LPS et LPS plus STZ. Les effets anti-pyrétique, anti-inflammatoire et anti-diabétique du SSR240612 suggèrent que le RB1 puisse représenter une cible thérapeutique valable pour le traitement de la co-morbidité associée au choc septique dans le diabète.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La douleur est une expérience subjective multidimensionnelle accompagnée de réponses physiologiques. Ces dernières sont régulées par des processus cérébraux qui jouent un rôle important dans la modulation spinale et cérébrale de la douleur. Cependant, les mécanismes de cette régulation sont encore mal définis et il est essentiel de bien les comprendre pour mieux traiter la douleur. Les quatre études de cette thèse avaient donc comme objectif de préciser les mécanismes endogènes de modulation de la douleur par la contreirritation (inhibition de la douleur par une autre douleur) et d’investiguer la dysfonction de ces mécanismes chez des femmes souffrant du syndrome de l’intestin irritable (Sii). Dans un premier temps, un modèle expérimental a été développé pour mesurer l’activité cérébrale en imagerie par résonance magnétique fonctionnelle concurremment à l’enregistrement du réflexe nociceptif de flexion (RIII : index de nociception spinale) et des réponses de conductance électrodermale (SCR : index d’activation sympathique) évoqués par des stimulations électriques douloureuses. La première étude indique que les différences individuelles d’activité cérébrale évoquée par les stimulations électriques dans les cortex orbitofrontal (OFC) et cingulaire sont associées aux différences individuelles de sensibilité à la douleur, de réactivité motrice (RIII) et de réactivité autonomique (SCR) chez des sujets sains. La deuxième étude montre que l’analgésie par contreirritation produite chez des sujets sains est accompagnée de l’inhibition de l’amygdale par OFC et d’une modulation du réflexe RIII par la substance grise périaqueducale (PAG) et le cortex somesthésique primaire (SI). Dans les troisième et quatrième études, il est montré que la contreirritation ne produit pas d’inhibition significative de la douleur et du réflexe RIII chez les patientes Sii en comparaison aux contrôles. De plus, les résultats indiquent que la sévérité des symptômes psychologiques est associée au déficit de modulation de la douleur et à une hypersensibilité diffuse chez les patientes Sii. Dans l’ensemble, cette thèse précise le rôle de certaines structures cérébrales dans les multiples composantes de la douleur et dans l’analgésie par contreirritation et montre que les patientes Sii présentent une dysfonction des mécanismes spinaux et cérébraux impliqués dans la perception et la modulation de la douleur.