911 resultados para Solar PV energy
Resumo:
With the launch last April of an affordable lithium-ion home battery – the Powerwall – Tesla’s CEO Elon Musk is betting that batteries are going to become a mass market. This may very well become reality, but this commentary argues that one should not jump to the conclusion that this is the end of energy utilities. Similar to solar panels, batteries have high upfront costs. The massive deployment of solar was driven by dedicated policy support, in many cases without any kind of cost or volume control. There is no such thing for batteries. In the absence of financing programmes, the author finds that high upfront costs provide an unfavourable starting point for a disruptive development. But he notes that the fact that self-consumption of stored solar energy will soon pay for consumers represents a paradigm shift in the power industry, which should be seen as an opportunity, at least for first-movers.
Resumo:
Background The improvement of energy efficiency in buildings is widely promoted as a measure to mitigate climate change through the reduction of CO2 emissions. Thermal regulations worldwide promote it, for both new and existing buildings. Among the existing stock, traditional and historic buildings pose the additional challenge of heritage conservation. Their energy efficiency upgrade raises the risk of provoking negative impacts on their significance. Aims and Methodology This research used an approach based on impact assessment methodologies, defining an inital baseline scenario for both heritage and energy, from which the appropriate improvement solutions were identified and assessed. The measures were dynamically simulated and the results for energy, CO2, cost and comfort compared with the initial scenario, and then being further assessed for their heritage impact to eventually determine the most feasible solutions. To test this method, ten case studies, representative of the identified typological variants, were selected among Oporto’s traditional buildings located in the World Heritage Site. Findings and Conclusions The fieldwork data revealed that the energy consumption of these dwellings was below the European average. Additionally, the households expressed that their home comfort sensation was overall positive. The simulations showed that the introduction of insulation and solar thermal panels were ineffective on these cases in terms of energy, cost and comfort. At the same time, these measures pose a great risk to the buildings heritage value. The most efficient solutions were obtained from behavioural changes and DHW retrofit. The study reinforced the idea that traditional buildings performed better than expected and can be retrofitted and updated at a low-cost and with passive solutions. The use of insulation and solar panels should be disregarded.
Resumo:
Arctic sea ice has declined and become thinner and younger (more seasonal) during the last decade. One consequence of this is that the surface energy budget of the Arctic Ocean is changing. While the role of surface albedo has been studied intensively, it is still widely unknown how much light penetrates through sea ice into the upper ocean, affecting sea-ice mass balance, ecosystems, and geochemical processes. Here we present the first large-scale under-ice light measurements, operating spectral radiometers on a remotely operated vehicle (ROV) under Arctic sea ice in summer. This data set is used to produce an Arctic-wide map of light distribution under summer sea ice. Our results show that transmittance through first-year ice (FYI, 0.11) was almost three times larger than through multi-year ice (MYI, 0.04), and that this is mostly caused by the larger melt-pond coverage of FYI (42 vs. 23%). Also energy absorption was 50% larger in FYI than in MYI. Thus, a continuation of the observed sea-ice changes will increase the amount of light penetrating into the Arctic Ocean, enhancing sea-ice melt and affecting sea-ice and upper-ocean ecosystems.
Resumo:
Mode of access: Internet.
Resumo:
"Work Performed Under Contract No. AC02-77CH00178."
Resumo:
"Work Performed Under Contract No. AC02-77CH00178."
Resumo:
"Work Performed Under Contract No. AC02-77CH00178."
Resumo:
"Work Performed Under Contract No. AC02-77CH00178."
Resumo:
"Work Performed Under Contract No. AC02-77CH00178."
Resumo:
"Work Performed Under Contract No. AC02-77CH00178."
Resumo:
"Work Performed Under Contract No. AC02-77CH00178."
Resumo:
"Work Performed Under Contract No. AC02-77CH00178."
Resumo:
"Work Performed Under Contract No. AC02-77CH00178."
Resumo:
"Work Performed Under Contract No. AC02-77CH00178."
Resumo:
"Work Performed Under Contract No. AC02-77CH00178."