859 resultados para Solanum lycocarpum


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La berenjena (Solanum melongena L.) es una planta solanácea de múltiples variedades, cuyos ancestros salvajes se sitúan en Indochina y el este de África. Su cultivo fue muy temprano en zonas de China e India. Aun así, no se extendió al Occidente antiguo ni apenas se conoció, de ahí su ausencia en los textos clásicos de botánica y farmacología. Fueron los árabes quienes llevaron el cultivo de la planta por el Norte de África y Al-Andalus, de donde pasó ya a Europa. Los primeros testimonios occidentales de la berenjena aparecen en traducciones latinas de textos árabes, para incorporarse luego a la literatura farmacológica medieval y, más tarde ya, a la del Renacimiento, que empezó a tratar de ella por su posible parecido con una especie de mandrágora. Pese a que se le reconocían algunas virtudes medicinales, siempre se la tuvo bajo sospecha por ser de sabor poco agradable, indigesta y causante de algunas afecciones. Solo los botánicos de finales del Renacimiento describirían la planta y sus variedades con criterios más «científicos» y botánicos, ya sin apenas intereses farmacológicos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antioxidant enzymes (catalase and peroxidase) and carotenoids (lutein and â-carotene) are often used as biomarkers of metal contamination of water and agricultural soils. In this study, the effects of heavy metals present in irrigation water on the aforementioned carotenoids of potatoes (Solanum tuberosum L.) and carrots (Daucus carota L.), cultivated in a greenhouse and irrigated with a water solution including different levels of Cr(VI) and Ni(II) were investigated. These results were compared to the levels of the same metabolites that had been assessed in market-available potato and carrot samples. The findings indicated that the levels of the examined metabolites on the treated with Cr and Ni samples, resemble the levels of the same parameters in the market samples, originating from polluted areas. Therefore, the antioxidant enzymes, catalase and peroxidase, and the carotenoids, lutein and â-carotene, could be handled as indicators of heavy metal pollution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Compounds exhibiting antioxidant activity have received much interest in the food industry because of their potential health benefits. Carotenoids such as lycopene, which in the human diet mainly derives from tomatoes (Solanum lycopersicum), have attracted much attention in this aspect and the study of their extraction, processing and storage procedures is of importance. Optical techniques potentially offer advantageous non-invasive and specific methods to monitor them. Objectives To obtain both fluorescence and Raman information to ascertain if ultrasound assisted extraction from tomato pulp has a detrimental effect on lycopene. Method Use of time-resolved fluorescence spectroscopy to monitor carotenoids in a hexane extract obtained from tomato pulp with application of ultrasound treatment (583 kHz). The resultant spectra were a combination of scattering and fluorescence. Because of their different timescales, decay associated spectra could be used to separate fluorescence and Raman information. This simultaneous acquisition of two complementary techniques was coupled with a very high time-resolution fluorescence lifetime measurement of the lycopene. Results Spectroscopic data showed the presence of phytofluene and chlorophyll in addition to lycopene in the tomato extract. The time-resolved spectral measurement containing both fluorescence and Raman data, coupled with high resolution time-resolved measurements, where a lifetime of ~5 ps was attributed to lycopene, indicated lycopene appeared unaltered by ultrasound treatment. Detrimental changes were, however, observed in both chlorophyll and phytofluene contributions. Conclusion Extracted lycopene appeared unaffected by ultrasound treatment, while other constituents (chlorophyll and phytofluene) were degraded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Induction of resistance is defined as the activation of a state of resistance against diseases which is induced systemically in plants by the use of biotic or abiotic agents without any modification of the plant genome, occurring non-specific way, by activating genes coding for various plant defense responses. Chitosan is a polymer derived from the deacetylation of chitin, which is found in large quantities in crustacean shell, and studied with the potential to control plant pathogens, both by its direct fungistatic action, as the ability to induce protection of plants, indicating the presence of molecules of elicitoras characteristics. Three experiments with objective of evaluating the potential of chitosan in the seedling resistance induction were developed, beet (Beta vulgaris) seeds, cucumber (Cucumis sativus) seeds and tomato (Solanum lycopersicum) seeds, and the control of Fusarium sp., Rhizoctonia solani K¨uhn e Pythium sp. in vitro conditions. The experimental design was completely randomized, with four replications. Beet seeds, tomato and cucumber were submerged in chitosan solution for 20 minutes, in concentrations of 0.25, 0.5, 1 and 2% in the control and distilled water. Seeds were sown in trays containing Plantmax Florestalr substrate sterilized and inoculated with Fusarium sp., Rhizoctonia solani K¨unh and Pythium sp., respectively for the three cultures. The experiment was conducted for 14 days in growth chamber with controlled temperature (25 C 2 C), light (12 hour photoperiod) and humidity (70% 10%). The evaluations were seed emergency, seedling damping-off, seedling length, fresh weight and activity of the enzymes phenylalanine amˆonia-liase (PAL), chitinase and b-1,3-glucanase. It was also rated the mycelial growth of Fusarium sp., Pythium sp. and R. solani on P.D.A. (Potato-Dextrose and Agar) culture medium containing chitosan at the same concentrations evaluated in seeds. For beet growing, seed treatment with chitosan presented higher emergence and the length of the seedlings, and reduced the percentage of tipping. Treatment with chitosan activated the systemic acquired resistance with expression of chitinase and b-1,3-glucanase enzymes. For the tomato crop in chitosan concentration of 0.25% favored the emergency of seedlings, reduced the incidence of tipping and activated the PAL enzymes, chitinase and b-1,3-glucanase. In cucumber on the concentration of up 0.5% favored seedlings emergence and reduces the incidence of tipping. Chitosan activated the PAL enzymes and b-1,3-glucanase. Chitosan also presented fungistatic action on the initial growth of Pythium sp. and R. solani in vitro conditions, however, such action did not prevail until the end of the experiment. To Fusarium sp. the concentration of chitosan resulted in the reduction of mycelial growth in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considerando la escasa información referente al efecto del bioactivador tiametoxam y los potenciales beneficios que este compuesto puede proporcionar en producción de semillas, el objetivo de este estudio fue evaluar la influencia del producto en el desempeño fisiológico de semillas de berenjena, morrón y tomate. Semillas de tres lotes de cada una de las especies fueron tratadas con seis dosis crecientes de tiametoxam (0; 0,2; 0,4; 0,6; 0,8 y 1,0 mL del producto por cada mil semillas) y sometidas a germinación, primer conteo de germinación, test de frío, test de envejecimiento acelerado, longitud total de las plántulas y emergencia de plántulas en invernadero. El bioactivador tuvo efecto positivo sobre los parámetros analizados, estimulando el desarrollo fisiológico de las semillas, con intensidades variables de acuerdo con el lote. En berenjena, el aumento medio porcentual de la germinación en el primer conteo tuvo un incremento de aproximadamente 11 %, en morrón de 13 % y para los lotes de tomate aproximadamente de 17 %. La dosis de 0,6 mL cada mil semillas resultó ser la más efectiva para aumentar el vigor de las semillas de las tres especies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O potássio é um dos macronutrientes que as plantas absorvem em maior quantidade, influenciando na batateira a produtividade e a qualidade dos tubérculos. A introdução de novas variedades de batata para indústria implica a avaliação prévia da sua adaptação às condições de solo, clima e tecnologia cultural. Neste contexto, instalou-se um ensaio em Salvaterra-de-Magos, em pleno campo de cultivo, com o objetivo de avaliar o efeito de diferentes doses e modo de fraccionamento (à plantação e em cobertura, após a emergência) de potássio (K2O) na batata de indústria “VR0808”. Foram avaliados 5 tratamentos: (K0-0kg/ha, K1-100kg/ha, K2-200kg/ha, K3-100+50+50kg/ha e K4-200+50+50kg/ha). O dispositivo experimental foi o de parcelas totalmente aleatórias, com 4 repetições. Foi possível concluir que, em relação ao rendimento, com excepção do K4-200+50+50kg/ha, não existiram diferenças significativas entre os tratamentos com 0, 100, 200 e 100+50+50kg/ha de K2O. A mobilização do K2O de formas fixas e/ou de origem orgânica poderá explicar este resultado. Observou-se um decréscimo dos teores de Ca ao nível da folha e do teor de matéria seca dos tubérculos com o incremento do potássio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O azoto é determinante na produtividade e na qualidade da batata para indústria. Com este trabalho pretendeu-se avaliar o efeito de diferentes doses de azoto na variedade de batata “Hermes”, em plena condições de cultivo do Vale do Tejo. Os tratamentos consistiram na aplicação de 0 (N0), 80 (N80), 160 (N160), 240 (N240) e 320 (N320) kg de azoto/ha, na forma de ENTECÒ 26. O ensaio foi instalado em parcelas totalmente aleatórias, com 4 repetições. Foi registado semanal a taxa de cobertura de solo pelo método da grelha até à sua cobertura total. Bissemanalmente, foram recolhidas plantas nos tratamentos N0 (0kgN/ha) e N160 (160kgN/ha) para avaliação do seu desenvolvimento e crescimento. No final do ciclo cultural avaliou-se a produção total, comercial, em peso e número de tubérculos. Avaliou-se ainda o peso específico, os teores em matéria seca dos tubérculos e a percentagem do azoto total na matéria seca das folhas e tubérculos. A adubação azotada influenciou a dimensão do aparelho fotossintético, através do estímulo de ramificações. Verificou-se uma maior produtividade de tubérculos nos tratamentos com maior aplicação de azoto, embora os acréscimos tenham sido menores a partir dos 160kg/ha. O azoto influenciou a percentagem de tubérculos de maior calibre.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-lycopene tomatoes (Solanum lycopersicum) are characterised by an intense red flesh-colour, due to an elevated concentration of the carotenoid, lycopene. However, this characteristic is only visible once fruit are cut open, making it impossible to differentiate intact high-lycopene fruit from standard tomato fruit, a clear market disadvantage. The reason that fruit colour of both high-lycopene and standard fruit looks almost identical from the outside is because tomato fruit normally contain the yellow flavonoid 'naringenin chalcone' in a thin layer of epidermal cells. It is this combination of naringenin chalcone and the underlying lycopene in the flesh that gives tomatoes their characteristic orange-red colour. By incorporation of the recessive colourless epidermis mutant allele 'y' (which prevents naringenin chalcone accumulation) into high-lycopene fruit, we have been able to create high-lycopene tomatoes (hp1.ogc.y) exhibiting a deep-pink colour visible from the outside. Hue angle of the skin of the high-lycopene 'y' mutant and a regular highlycopene tomato (hp1.ogc.Y) was 30 and 38°, respectively, while flesh values were similar at 31 and 32°, respectively. Removal of naringenin chalcone from the epidermis appeared to improve the visibility of underlying lycopene, such that fruit outer colour became a subsequent indicator of underlying flesh colour. The removal of epidermal pigmentation means that high-lycopene fruit can now be differentiated from standard tomato fruit in the market place without the need to cut fruit open.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is increasing interest in evaluating the environmental effects on crop architectural traits and yield improvement. However, crop models describing the dynamic changes in canopy structure with environmental conditions and the complex interactions between canopy structure, light interception, and dry mass production are only gradually emerging. Using tomato (Solanum lycopersicum L.) as a model crop, a dynamic functional-structural plant model (FSPM) was constructed, parameterized, and evaluated to analyse the effects of temperature on architectural traits, which strongly influence canopy light interception and shoot dry mass. The FSPM predicted the organ growth, organ size, and shoot dry mass over time with high accuracy (>85%). Analyses of this FSPM showed that, in comparison with the reference canopy, shoot dry mass may be affected by leaf angle by as much as 20%, leaf curvature by up to 7%, the leaf length: width ratio by up to 5%, internode length by up to 9%, and curvature ratios and leaf arrangement by up to 6%. Tomato canopies at low temperature had higher canopy density and were more clumped due to higher leaf area and shorter internodes. Interestingly, dry mass production and light interception of the clumped canopy were more sensitive to changes in architectural traits. The complex interactions between architectural traits, canopy light interception, dry mass production, and environmental conditions can be studied by the dynamic FSPM, which may serve as a tool for designing a canopy structure which is 'ideal' in a given environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Ecologia, Programa de Pós-Graduação em Ecologia, 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The eggplant ( Solanum aethiopicum ) is the species of the Solanum genus, whose geographical distribution is broadest. It is grown throughout tropical Africa, and includes three groups of cultivars commonly called African or indigenous eggplant. Kumba group or “bitter eggplant” is an important Solanaceous vegetable crop in Burkina Faso. The objective of this study was to determine genetic variability, strength of association and level of heritability among agronomic interest traits. Phenotypic and genotypic variations and heritability of 14 traits were estimated in 61 accessions at Institut de Développement Rural (IDR), Gampela in Burkina Faso. High phenotypic and genotypic coefficients of variation were observed for fruit diameter, number of seeds per fruit, fruit weight, leaf blade length and width, and height at flowering. In addition, genetic and phenotypic variances were high for the number of seed, fruit weight, plant height at flowering and days to 50% flowering. High heritability estimates were recorded for all traits. Fruit weight showed a positive association with fruit diameter and thickness. The fifty percent flowering cycle registered positive correlations with plant height and fruit diameter. Fruit number showed a negative association with fruit weight and diameter, and 50% flowering cyle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tomato (Solanum lycopersicum L.) is an important vegetable crop and often cultivated in regions exposed to salinity and high temperatures (HT) which change plant architecture, decrease canopy light interception and disturb physiological functions. However, the long-term effects of salinity and HT combination (S+HT) on plant growth are still unclear. A dynamic functional-structural plant model (FSPM) of tomato was parameterized and evaluated for different levels of S+HT combinations. The evaluated model was used to quantify the contributions of morphological changes (architectural effects) and physiological disturbances (non-architectural effects) on the reduction of shoot dry mass under S+HT. The model predicted architectural variables with high accuracy (>85%), which ensured the reliability of the model analyses. HT enhanced architectural effects but reduced non-architectural effects of salinity on dry mass production. The stronger architectural effects of salinity under HT could not be counterbalanced by the smaller non-architectural effects. Therefore, long-term influences of HT on shoot dry mass under salinity were negative at the whole plant level. Our model analysis highlights the importance of plant architecture at canopy level in studying the plant responses to the environments and shows the merits of dynamic FSPMs as heuristic tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flowering is a fundamental process in the life cycle for plant. This process is marked by vegetative to reproductive apical meristem conversion, due to interactions between several factors, both internal and external to plant. Therefore, eight subtractive libraries were constructed using apical meristem induced or not induced for two contrasting species: Solanum lycopersicum cv. Micro-Tom and Solanum pimpinellifolium. Several cDNAs were identified and among these, were selected two cDNAs: one homologous cDNA to cyclophilin (LeCYP1) and the other to Auxin repressed protein (ARP). It has observed that LeCYP1 and ARP genes are important in the developmental process to plants. In silico analysis, were used several databases with the exclusion criterion E-value <1.0x10-15. As a result, conservation was observed for proteins analyzed by means of multiple alignments and the presence of functional domains. Then, overexpression cassettes were constructed for the ARP cDNA in sense and antisense orientations. For this step, it was used the CaMV35S promoter. The cDNA orientation (sense or antisense) in relation to the promoter was determined by restriction enzymes and sequencing. Then, this cassette was transferred to binary vector pZP211 and these cassettes were transferred into Agrobacterium tumefaciens LBA4404. S. lycopersicum cv. Micro-Tom (MT) and MT-Rg1 plants were transformed. In addition, seedlings were subjected to hormone treatments using a synthetic auxin (- naphthalene acetic acid) and cyclosporin A (cyclophilin inhibitor) treatments and it was found that the hormone treatment there were changes in development of lateral roots pattern, probably related to decreases in auxin signaling caused by reduction of LeCYP1 in MT-dgt plants while cyclosporin A treatments, there was a slight delay in flowering in cv. MT plants. Furthermore, assay with real-time PCR (RT-qPCR) were done for expression level analysis from LeCYP1 and ARP in order to functionally characterize these sequences in tomato plants.