926 resultados para Small Scale Industries
Resumo:
In the context of the SSF Guidelines, the need now is to progressively work towards achieving food sovereignty for the small-scale fishing communities and fishworkers.
Resumo:
The fisheries sector in Cambodia contributes 8%–12% to national GDP and 25% - 30% to agricultural GDP, with an estimated 4.5 million people involved in fishing and associated trades. Fish and other aquatic animals are important food sources, contributing an estimated national average of 60% - 70% of total animal protein intake. Of the 2013 total fish production, 550,000 metric tons were harvested from freshwater habitats, of which rice field fisheries and small-scale family fisheries contributed approximately 20%. The productivity and value of rice field fisheries to households in rural Cambodia has been highlighted in a number of previous studies. The Fisheries Administration of the Ministry of Agriculture, Forestry and Fisheries plans to increase productivity from rice field fisheries and aquaculture at an annual rate of 15% to maintain supply for a growing population. This report draws mainly on the baseline and monitoring data from the Rice Field Fisheries Enhancement Project (RFFEP) during its implementation between 2012 and 2014. Reference is also made to the Fish on Farms project to highlight the relative contribution of fish from small-scale aquaculture compared to wild-caught fish.
Resumo:
In the framework of the Italian research project ReLUIS-DPC, a set of centrifuge tests were carried out at the Schofield Centre in Cambridge (UK) to investigate the seismic behaviour of tunnels. Four samples of dry sand were prepared at different densities, in which a small scale model of circular tunnel was inserted, instrumented with gauges measuring hoop and bending strains. Arrays of accelerometers in the soil and on the box allowed the amplification of ground motion to be evaluated; LVDTs measured the soil surface settlement. This paper describes the main results of this research, showing among others the evolution of the internal forces during the model earthquakes at significant locations along the tunnel lining. © 2010 Taylor & Francis Group, London.
Resumo:
The Particle Image Velocimetry (PIV) technique is an image processing tool to obtain instantaneous velocity measurements during an experiment. The basic principle of PIV analysis is to divide the image into small patches and calculate the locations of the individual patches in consecutive images with the help of cross correlation functions. This paper focuses on the application of the PIV analysis in dynamic centrifuge tests on small scale tunnels in loose, dry sand. Digital images were captured during the application of the earthquake loading on tunnel models using a fast digital camera capable of taking digital images at 1000 frames per second at 1 Megapixel resolution. This paper discusses the effectiveness of the existing methods used to conduct PIV analyses on dynamic centrifuge tests. Results indicate that PIV analysis in dynamic testing requires special measures in order to obtain reasonable deformation data. Nevertheless, it was possible to obtain interesting mechanisms regarding the behaviour of the tunnels from PIV analyses. © 2010 Taylor & Francis Group, London.
Resumo:
Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise.
Resumo:
Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise. © 2012 Elsevier Ltd.
Resumo:
The natural ventilation of a building, flanked by others forming urban canyons and driven by the combined forces of wind and thermal buoyancy, has been studied experimentally at small scale. The aim was to improve our understanding of the effect of the urban canyon geometry on passive building ventilation. The steady ventilation of an isolated building was observed to change dramatically, both in terms of the thermal stratification and airflow rate, when placed within the confines of urban canyons. The ventilation flows and internal stratifications observed at small scale are presented for a range of canyon widths (building densities) and wind speeds. Two typical opening arrangements are considered. Flanking an otherwise isolated building with others of similar geometry as in a typical urban canyon was shown to reverse the effect of wind on the thermally-driven ventilation. As a consequence, neglecting the surrounding geometry when designing naturally-ventilated buildings may result in poor ventilation. Further implications are discussed.
Resumo:
The transfers of air driven by a revolving door connecting two rooms of initially different temperatures are investigated. The results of small-scale laboratory modelling show that a critical revolution rate exists for which transfers are maximal for a given combination of door geometry, revolution rate and temperature contrast. This critical revolution rate divides two possible transfer regimes for revolving doors. Potential implications of our findings to revolving door operation, to heat losses across the doorway and to ventilation driven by the door are discussed.
Resumo:
We examine the time taken to flush pollutants from a naturally ventilated room. A simple theoretical model is developed to predict the time taken for neutrally-buoyant pollutants to be removed from a room by a flow driven by localised heat inputs; both line and point heat sources are considered. We show that the rate of flushing is a function of the room volume, vent areas ( A) and the distribution, number (n) and strength (B) of the heat sources. We also show that the entire problem can be reduced to a single parameter ( μ) that is a measure of the vent areas, and a dimensionless time ( τ) that is a function of B, V and μ. Small-scale salt-bath experiments were conducted to measure the flushing rates in order to validate our modelling assumptions and predictions. The predicted flushing times show good agreement with the experiments over a wide range of μ. We apply our model to a typical open plan office and lecture theatre and discuss some of the implications of our results. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
An experimental investigation has been undertaken in which vortex generators (VGs) have been employed to inhibit boundary-layer separation produced by the combined adversepressure- gradient of a terminal shock-wave and subsonic diffuser. This setup has been developed as part of a program to produce a more inlet relevant flow-field using a small-scale wind tunnel than previous studies. The resulting flow is dominated by large-scale separation, and as such, is thought to be a good test-bed for flow control. In this investigation, VGs have been added to determine their potential for shock-induced separation mitigation. In line with previous studies, it was observed that the application of VGs alone was not able to significantly alleviate separation overall, because enlarged corner separations was observed. Only when control of the corner separations using corner bleed was employed alongside centre-span control using VGs was a significant improvement in both wall pressure recovery (6% increase) and stagnation pressure recovery (2.4% increase) observed. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
This paper reviews and addresses certain aspects of Silicon-On-Insulator (SOI) technologies for a harsh environment. The paper first describes the need for specialized sensors in applications such as (i) domestic and other small-scale boilers, (ii) CO2 Capture and Sequestration, (iii) oil & gas storage and transportation, and (iv) automotive. We describe in brief the advantages and special features of SOI technology for sensing applications requiring temperatures in excess of the typical bulk silicon junction temperatures of 150oC. Finally we present the concepts, structures and prototypes of simple and smart micro-hotplate and Infra Red (IR) based emitters for NDIR (Non Dispersive IR) gas sensors in harsh environments. © 2012 IEEE.
Resumo:
Jacked piles are becoming a valuable installation method due to the low noise and vibration involved in the installation procedure. Cyclic jacking may be used in an attempt to decrease the required installation force. Small scale models of jacked piles were tested in sand and silt in a 10 m beam centrifuge. Two different piles were tested: smooth and rough. Piles were driven in two ways with monotonic and cyclically jacked installations. The cyclically jacked installation involves displacement reversal at certain depth for a fixed number of cycles. The depth of reversal and amplitude of the cycle vary for different tests. Data show that the base resistance increases during cyclic jacking due to soil compaction at the pile toe. On the other hand, shaft load decreases with the number of cycles applied due to densification of soil next to the pile shaft. Cyclic jacking may be used in unplugged tubular piles to decrease the required installation load. © 2013 Taylor & Francis Group, London.
Resumo:
In order to improve the power density of microactuators, recent research focuses on the applicability of fluidic power at microscale. One of the reasons that hydraulic actuators are still uncommon in micro system technology is due to the difficulty of fabricating powerful microseals. This paper presents two seal technologies that are suitable for sealing small-scale hydraulic actuators. Measurements on prototype actuators show that force densities up to 0,45 N/mm2 (0,025 N/mm3) and work densities up to 0,2 mJ/mm3 can easily be achieved with the developed seal technology. These characteristics can still be improved as the maximum driving pressures of the actuators have not yet been determined. © 2005 IEEE.
Resumo:
To investigate whether vortex generators can be an effective form of passive flow control an experimental investigation has been conducted in a small-scale wind tunnel. With specific emphasis on supersonic inlet applications flow separation was initiated using a combined terminal shock wave and subsonic diffuser: a configuration that has been developed as a part of a program to produce a more inlet-relevant flowfield in a small-scale wind tunnel than previous studies. When flow control was initially introduced little overall flow improvement was obtained as the losses tended to be redistributed instead of removed. It became apparent that there existed a strong coupling between the center-span flow and the corner flows. As a consequence, only when flow control was applied to both the corner flows and center-span flow was a significant flow improvement obtained. When corner suction and center-span vortex generators were employed in tandem separation was much reduced and wall-pressure and stagnation pressure were notably improved. As a result, when applied appropriately, it is thought that vortex generators do have the potential to reduce the dependence on boundary-layer bleed for the purpose of separation suppression. Copyright © 2012 by Neil Titchener and Holger Babinsky. Published by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Nanoindentation is ideal for the characterization of inhomogeneous biological materials. However, the use of nanoindentation techniques in biological systems is associated with some distinctively different techniques and challenges. For example, engineering materials used in the microelectronics industry (e.g. ceramics and metals) for which the technique was developed, are relatively stiff and exhibit time-independent mechanical responses. Biological materials, on the other hand, exhibit time-dependent behavior, and can span a range of stiffness regimes from moduli of Pa to GPa - eight to nine orders of magnitude. As such, there are differences in the selection of instrumentation, tip geometry, and data analysis in comparison with the "black box" nanoindentation techniques as sold by commercial manufacturers. The use of scanning probe equipment (atomic force miscroscopy) is also common for small-scale indentation of soft materials in biology. The book is broadly divided into two parts. The first part presents the "basic science" of nanoindentation including the background of contact mechanics underlying indentation technique, and the instrumentation used to gather mechanical data. Both the mechanics background and the instrumentation overview provide perspectives that are optimized for biological applications, including discussions on hydrated materials and adaptations for low-stiffness materials. The second part of the book covers the applications of nanoindentation technique in biological materials. Included in the coverage are mineralized and nonmineralized tissues, wood and plant tissues, tissue-engineering substitute materials, cells and membranes, and cutting-edge applications at molecular level including the use of functionalized tips to probe specific molecular interactions (e.g. the ligand-receptor binding). The book concludes with a concise summary and an insightful forecast of the future highlighting the current challenges. © 2011 by Pan Stanford Publishing Pte. Ltd. All rights reserved.