897 resultados para Simulation-based methods
Resumo:
The last decade has shown that the global paper industry needs new processes and products in order to reassert its position in the industry. As the paper markets in Western Europe and North America have stabilized, the competition has tightened. Along with the development of more cost-effective processes and products, new process design methods are also required to break the old molds and create new ideas. This thesis discusses the development of a process design methodology based on simulation and optimization methods. A bi-level optimization problem and a solution procedure for it are formulated and illustrated. Computational models and simulation are used to illustrate the phenomena inside a real process and mathematical optimization is exploited to find out the best process structures and control principles for the process. Dynamic process models are used inside the bi-level optimization problem, which is assumed to be dynamic and multiobjective due to the nature of papermaking processes. The numerical experiments show that the bi-level optimization approach is useful for different kinds of problems related to process design and optimization. Here, the design methodology is applied to a constrained process area of a papermaking line. However, the same methodology is applicable to all types of industrial processes, e.g., the design of biorefiners, because the methodology is totally generalized and can be easily modified.
Resumo:
Modern machine structures are often fabricated by welding. From a fatigue point of view, the structural details and especially, the welded details are the most prone to fatigue damage and failure. Design against fatigue requires information on the fatigue resistance of a structure’s critical details and the stress loads that act on each detail. Even though, dynamic simulation of flexible bodies is already current method for analyzing structures, obtaining the stress history of a structural detail during dynamic simulation is a challenging task; especially when the detail has a complex geometry. In particular, analyzing the stress history of every structural detail within a single finite element model can be overwhelming since the amount of nodal degrees of freedom needed in the model may require an impractical amount of computational effort. The purpose of computer simulation is to reduce amount of prototypes and speed up the product development process. Also, to take operator influence into account, real time models, i.e. simplified and computationally efficient models are required. This in turn, requires stress computation to be efficient if it will be performed during dynamic simulation. The research looks back at the theoretical background of multibody dynamic simulation and finite element method to find suitable parts to form a new approach for efficient stress calculation. This study proposes that, the problem of stress calculation during dynamic simulation can be greatly simplified by using a combination of floating frame of reference formulation with modal superposition and a sub-modeling approach. In practice, the proposed approach can be used to efficiently generate the relevant fatigue assessment stress history for a structural detail during or after dynamic simulation. In this work numerical examples are presented to demonstrate the proposed approach in practice. The results show that approach is applicable and can be used as proposed.
Resumo:
Rapid ongoing evolution of multiprocessors will lead to systems with hundreds of processing cores integrated in a single chip. An emerging challenge is the implementation of reliable and efficient interconnection between these cores as well as other components in the systems. Network-on-Chip is an interconnection approach which is intended to solve the performance bottleneck caused by traditional, poorly scalable communication structures such as buses. However, a large on-chip network involves issues related to congestion problems and system control, for instance. Additionally, faults can cause problems in multiprocessor systems. These faults can be transient faults, permanent manufacturing faults, or they can appear due to aging. To solve the emerging traffic management, controllability issues and to maintain system operation regardless of faults a monitoring system is needed. The monitoring system should be dynamically applicable to various purposes and it should fully cover the system under observation. In a large multiprocessor the distances between components can be relatively long. Therefore, the system should be designed so that the amount of energy-inefficient long-distance communication is minimized. This thesis presents a dynamically clustered distributed monitoring structure. The monitoring is distributed so that no centralized control is required for basic tasks such as traffic management and task mapping. To enable extensive analysis of different Network-on-Chip architectures, an in-house SystemC based simulation environment was implemented. It allows transaction level analysis without time consuming circuit level implementations during early design phases of novel architectures and features. The presented analysis shows that the dynamically clustered monitoring structure can be efficiently utilized for traffic management in faulty and congested Network-on-Chip-based multiprocessor systems. The monitoring structure can be also successfully applied for task mapping purposes. Furthermore, the analysis shows that the presented in-house simulation environment is flexible and practical tool for extensive Network-on-Chip architecture analysis.
Resumo:
In this doctoral thesis, methods to estimate the expected power cycling life of power semiconductor modules based on chip temperature modeling are developed. Frequency converters operate under dynamic loads in most electric drives. The varying loads cause thermal expansion and contraction, which stresses the internal boundaries between the material layers in the power module. Eventually, the stress wears out the semiconductor modules. The wear-out cannot be detected by traditional temperature or current measurements inside the frequency converter. Therefore, it is important to develop a method to predict the end of the converter lifetime. The thesis concentrates on power-cycling-related failures of insulated gate bipolar transistors. Two types of power modules are discussed: a direct bonded copper (DBC) sandwich structure with and without a baseplate. Most common failure mechanisms are reviewed, and methods to improve the power cycling lifetime of the power modules are presented. Power cycling curves are determined for a module with a lead-free solder by accelerated power cycling tests. A lifetime model is selected and the parameters are updated based on the power cycling test results. According to the measurements, the factor of improvement in the power cycling lifetime of modern IGBT power modules is greater than 10 during the last decade. Also, it is noticed that a 10 C increase in the chip temperature cycle amplitude decreases the lifetime by 40%. A thermal model for the chip temperature estimation is developed. The model is based on power loss estimation of the chip from the output current of the frequency converter. The model is verified with a purpose-built test equipment, which allows simultaneous measurement and simulation of the chip temperature with an arbitrary load waveform. The measurement system is shown to be convenient for studying the thermal behavior of the chip. It is found that the thermal model has a 5 C accuracy in the temperature estimation. The temperature cycles that the power semiconductor chip has experienced are counted by the rainflow algorithm. The counted cycles are compared with the experimentally verified power cycling curves to estimate the life consumption based on the mission profile of the drive. The methods are validated by the lifetime estimation of a power module in a direct-driven wind turbine. The estimated lifetime of the IGBT power module in a direct-driven wind turbine is 15 000 years, if the turbine is located in south-eastern Finland.
Resumo:
Energy efficiency is one of the major objectives which should be achieved in order to implement the limited energy resources of the world in a sustainable way. Since radiative heat transfer is the dominant heat transfer mechanism in most of fossil fuel combustion systems, more accurate insight and models may cause improvement in the energy efficiency of the new designed combustion systems. The radiative properties of combustion gases are highly wavelength dependent. Better models for calculating the radiative properties of combustion gases are highly required in the modeling of large scale industrial combustion systems. With detailed knowledge of spectral radiative properties of gases, the modeling of combustion processes in the different applications can be more accurate. In order to propose a new method for effective non gray modeling of radiative heat transfer in combustion systems, different models for the spectral properties of gases including SNBM, EWBM, and WSGGM have been studied in this research. Using this detailed analysis of different approaches, the thesis presents new methods for gray and non gray radiative heat transfer modeling in homogeneous and inhomogeneous H2O–CO2 mixtures at atmospheric pressure. The proposed method is able to support the modeling of a wide range of combustion systems including the oxy-fired combustion scenario. The new methods are based on implementing some pre-obtained correlations for the total emissivity and band absorption coefficient of H2O–CO2 mixtures in different temperatures, gas compositions, and optical path lengths. They can be easily used within any commercial CFD software for radiative heat transfer modeling resulting in more accurate, simple, and fast calculations. The new methods were successfully used in CFD modeling by applying them to industrial scale backpass channel under oxy-fired conditions. The developed approaches are more accurate compared with other methods; moreover, they can provide complete explanation and detailed analysis of the radiation heat transfer in different systems under different combustion conditions. The methods were verified by applying them to some benchmarks, and they showed a good level of accuracy and computational speed compared to other methods. Furthermore, the implementation of the suggested banded approach in CFD software is very easy and straightforward.
Resumo:
In this Master’s thesis agent-based modeling has been used to analyze maintenance strategy related phenomena. The main research question that has been answered was: what does the agent-based model made for this study tell us about how different maintenance strategy decisions affect profitability of equipment owners and maintenance service providers? Thus, the main outcome of this study is an analysis of how profitability can be increased in industrial maintenance context. To answer that question, first, a literature review of maintenance strategy, agent-based modeling and maintenance modeling and optimization was conducted. This review provided the basis for making the agent-based model. Making the model followed a standard simulation modeling procedure. With the simulation results from the agent-based model the research question was answered. Specifically, the results of the modeling and this study are: (1) optimizing the point in which a machine is maintained increases profitability for the owner of the machine and also the maintainer with certain conditions; (2) time-based pricing of maintenance services leads to a zero-sum game between the parties; (3) value-based pricing of maintenance services leads to a win-win game between the parties, if the owners of the machines share a substantial amount of their value to the maintainers; and (4) error in machine condition measurement is a critical parameter to optimizing maintenance strategy, and there is real systemic value in having more accurate machine condition measurement systems.
Resumo:
Longitudinal surveys are increasingly used to collect event history data on person-specific processes such as transitions between labour market states. Surveybased event history data pose a number of challenges for statistical analysis. These challenges include survey errors due to sampling, non-response, attrition and measurement. This study deals with non-response, attrition and measurement errors in event history data and the bias caused by them in event history analysis. The study also discusses some choices faced by a researcher using longitudinal survey data for event history analysis and demonstrates their effects. These choices include, whether a design-based or a model-based approach is taken, which subset of data to use and, if a design-based approach is taken, which weights to use. The study takes advantage of the possibility to use combined longitudinal survey register data. The Finnish subset of European Community Household Panel (FI ECHP) survey for waves 1–5 were linked at person-level with longitudinal register data. Unemployment spells were used as study variables of interest. Lastly, a simulation study was conducted in order to assess the statistical properties of the Inverse Probability of Censoring Weighting (IPCW) method in a survey data context. The study shows how combined longitudinal survey register data can be used to analyse and compare the non-response and attrition processes, test the missingness mechanism type and estimate the size of bias due to non-response and attrition. In our empirical analysis, initial non-response turned out to be a more important source of bias than attrition. Reported unemployment spells were subject to seam effects, omissions, and, to a lesser extent, overreporting. The use of proxy interviews tended to cause spell omissions. An often-ignored phenomenon classification error in reported spell outcomes, was also found in the data. Neither the Missing At Random (MAR) assumption about non-response and attrition mechanisms, nor the classical assumptions about measurement errors, turned out to be valid. Both measurement errors in spell durations and spell outcomes were found to cause bias in estimates from event history models. Low measurement accuracy affected the estimates of baseline hazard most. The design-based estimates based on data from respondents to all waves of interest and weighted by the last wave weights displayed the largest bias. Using all the available data, including the spells by attriters until the time of attrition, helped to reduce attrition bias. Lastly, the simulation study showed that the IPCW correction to design weights reduces bias due to dependent censoring in design-based Kaplan-Meier and Cox proportional hazard model estimators. The study discusses implications of the results for survey organisations collecting event history data, researchers using surveys for event history analysis, and researchers who develop methods to correct for non-sampling biases in event history data.
Resumo:
Stochastic differential equation (SDE) is a differential equation in which some of the terms and its solution are stochastic processes. SDEs play a central role in modeling physical systems like finance, Biology, Engineering, to mention some. In modeling process, the computation of the trajectories (sample paths) of solutions to SDEs is very important. However, the exact solution to a SDE is generally difficult to obtain due to non-differentiability character of realizations of the Brownian motion. There exist approximation methods of solutions of SDE. The solutions will be continuous stochastic processes that represent diffusive dynamics, a common modeling assumption for financial, Biology, physical, environmental systems. This Masters' thesis is an introduction and survey of numerical solution methods for stochastic differential equations. Standard numerical methods, local linearization methods and filtering methods are well described. We compute the root mean square errors for each method from which we propose a better numerical scheme. Stochastic differential equations can be formulated from a given ordinary differential equations. In this thesis, we describe two kind of formulations: parametric and non-parametric techniques. The formulation is based on epidemiological SEIR model. This methods have a tendency of increasing parameters in the constructed SDEs, hence, it requires more data. We compare the two techniques numerically.
Virtual Testing of Active Magnetic Bearing Systems based on Design Guidelines given by the Standards
Resumo:
Active Magnetic Bearings offer many advantages that have brought new applications to the industry. However, similarly to all new technology, active magnetic bearings also have downsides and one of those is the low standardization level. This thesis is studying mainly the ISO 14839 standard and more specifically the system verification methods. These verifying methods are conducted using a practical test with an existing active magnetic bearing system. The system is simulated with Matlab using rotor-bearing dynamics toolbox, but this study does not include the exact simulation code or a direct algebra calculation. However, this study provides the proof that standardized simulation methods can be applied in practical problems.
Resumo:
The most common reason for a low-voltage induction motor breakdown is a bearing failure. Along with the increasing popularity of modern frequency converters, bearing failures have become the most important motor fault type. Conditions in which bearing currents are likely to occur are generated as a side effect of fast du/dt switching transients. Once present, different types of bearing currents can accelerate the mechanical wear of bearings by causing deformation of metal parts in the bearing and degradation of the lubricating oil properties.The bearing current phenomena are well known, and several bearing current measurement and mitigation methods have been proposed. Nevertheless, in order to develop more feasible methods to measure and mitigate bearing currents, better knowledge of the phenomena is required. When mechanical wear is caused by bearing currents, the resulting aging impact has to be monitored and dealt with. Moreover, because of the stepwise aging mechanism, periodically executed condition monitoring measurements have been found ineffective. Thus, there is a need for feasible bearing current measurement methods that can be applied in parallel with the normal operation of series production drive systems. In order to reach the objectives of feasibility and applicability, nonintrusive measurement methods are preferred. In this doctoral dissertation, the characteristics and conditions of bearings that are related to the occurrence of different kinds of bearing currents are studied. Further, the study introduces some nonintrusive radio-frequency-signal-based approaches to detect and measure parameters that are associated with the accelerated bearing wear caused by bearing currents.
Resumo:
Nowadays the energy efficiency has become one of the most concerned topics. Compressors are the equipment, which is very common in industry. Moreover, they tend to operate during long cycles and therefore even small decrease in power consumption can significantly reduce electricity costs during the year. And therefore it is important to investigate ways of increasing the energy efficiency of the compressors. In the thesis rotary screw compressor alongside with different control approaches is described. Simulation models for various control types of rotary screw compressor are developed. Analysis of laboratory equipment is conducted and results are compared with simulation. Suggestions of the real laboratory equipment improvement are given.
Resumo:
The aim of this thesis is to propose a novel control method for teleoperated electrohydraulic servo systems that implements a reliable haptic sense between the human and manipulator interaction, and an ideal position control between the manipulator and the task environment interaction. The proposed method has the characteristics of a universal technique independent of the actual control algorithm and it can be applied with other suitable control methods as a real-time control strategy. The motivation to develop this control method is the necessity for a reliable real-time controller for teleoperated electrohydraulic servo systems that provides highly accurate position control based on joystick inputs with haptic capabilities. The contribution of the research is that the proposed control method combines a directed random search method and a real-time simulation to develop an intelligent controller in which each generation of parameters is tested on-line by the real-time simulator before being applied to the real process. The controller was evaluated on a hydraulic position servo system. The simulator of the hydraulic system was built based on Markov chain Monte Carlo (MCMC) method. A Particle Swarm Optimization algorithm combined with the foraging behavior of E. coli bacteria was utilized as the directed random search engine. The control strategy allows the operator to be plugged into the work environment dynamically and kinetically. This helps to ensure the system has haptic sense with high stability, without abstracting away the dynamics of the hydraulic system. The new control algorithm provides asymptotically exact tracking of both, the position and the contact force. In addition, this research proposes a novel method for re-calibration of multi-axis force/torque sensors. The method makes several improvements to traditional methods. It can be used without dismantling the sensor from its application and it requires smaller number of standard loads for calibration. It is also more cost efficient and faster in comparison to traditional calibration methods. The proposed method was developed in response to re-calibration issues with the force sensors utilized in teleoperated systems. The new approach aimed to avoid dismantling of the sensors from their applications for applying calibration. A major complication with many manipulators is the difficulty accessing them when they operate inside a non-accessible environment; especially if those environments are harsh; such as in radioactive areas. The proposed technique is based on design of experiment methodology. It has been successfully applied to different force/torque sensors and this research presents experimental validation of use of the calibration method with one of the force sensors which method has been applied to.
Resumo:
This dissertation describes an approach for developing a real-time simulation for working mobile vehicles based on multibody modeling. The use of multibody modeling allows comprehensive description of the constrained motion of the mechanical systems involved and permits real-time solving of the equations of motion. By carefully selecting the multibody formulation method to be used, it is possible to increase the accuracy of the multibody model while at the same time solving equations of motion in real-time. In this study, a multibody procedure based on semi-recursive and augmented Lagrangian methods for real-time dynamic simulation application is studied in detail. In the semirecursive approach, a velocity transformation matrix is introduced to describe the dependent coordinates into relative (joint) coordinates, which reduces the size of the generalized coordinates. The augmented Lagrangian method is based on usage of global coordinates and, in that method, constraints are accounted using an iterative process. A multibody system can be modelled as either rigid or flexible bodies. When using flexible bodies, the system can be described using a floating frame of reference formulation. In this method, the deformation mode needed can be obtained from the finite element model. As the finite element model typically involves large number of degrees of freedom, reduced number of deformation modes can be obtained by employing model order reduction method such as Guyan reduction, Craig-Bampton method and Krylov subspace as shown in this study The constrained motion of the working mobile vehicles is actuated by the force from the hydraulic actuator. In this study, the hydraulic system is modeled using lumped fluid theory, in which the hydraulic circuit is divided into volumes. In this approach, the pressure wave propagation in the hoses and pipes is neglected. The contact modeling is divided into two stages: contact detection and contact response. Contact detection determines when and where the contact occurs, and contact response provides the force acting at the collision point. The friction between tire and ground is modelled using the LuGre friction model, which describes the frictional force between two surfaces. Typically, the equations of motion are solved in the full matrices format, where the sparsity of the matrices is not considered. Increasing the number of bodies and constraint equations leads to the system matrices becoming large and sparse in structure. To increase the computational efficiency, a technique for solution of sparse matrices is proposed in this dissertation and its implementation demonstrated. To assess the computing efficiency, augmented Lagrangian and semi-recursive methods are implemented employing a sparse matrix technique. From the numerical example, the results show that the proposed approach is applicable and produced appropriate results within the real-time period.
Resumo:
We propose finite sample tests and confidence sets for models with unobserved and generated regressors as well as various models estimated by instrumental variables methods. The validity of the procedures is unaffected by the presence of identification problems or \"weak instruments\", so no detection of such problems is required. We study two distinct approaches for various models considered by Pagan (1984). The first one is an instrument substitution method which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although related) problems, while the second one is based on splitting the sample. The instrument substitution method uses the instruments directly, instead of generated regressors, in order to test hypotheses about the \"structural parameters\" of interest and build confidence sets. The second approach relies on \"generated regressors\", which allows a gain in degrees of freedom, and a sample split technique. For inference about general possibly nonlinear transformations of model parameters, projection techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian errors and strictly exogenous regressors. We show that the various tests and confidence sets proposed are (locally) \"asymptotically valid\" under much weaker assumptions. The properties of the tests proposed are examined in simulation experiments. In general, they outperform the usual asymptotic inference methods in terms of both reliability and power. Finally, the techniques suggested are applied to a model of Tobin’s q and to a model of academic performance.