999 resultados para Signal generators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims at optimally adjusting a set of green times for traffic lights in a single intersection with the purpose of minimizing travel delay time and traffic congestion. Neural network (NN) and fuzzy logic system (FLS) are two methods applied to develop intelligent traffic timing controller. For this purpose, an intersection is considered and simulated as an intelligent agent that learns how to set green times in each cycle based on the traffic information. The training approach and data for both these learning methods are similar. Both methods use genetic algorithm to tune their parameters during learning. Finally, The performance of the two intelligent learning methods is compared with the performance of simple fixed-time method. Simulation results indicate that both intelligent methods significantly reduce the total delay in the network compared to the fixed-time method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

  This paper aims at optimally adjusting a set of green times for traffic lights in a single intersection with the purpose of minimizing travel delay time and traffic congestion. Fuzzy logic system (FLS) is the method applied to develop the intelligent traffic timing controller. For this purpose, an intersection is considered and simulated as an intelligent agent that learns how to set green times in each cycle based on the traffic information. The FLS controller (FLC) uses genetic algorithm to tune its parameters during learning phase. Finally, The performance of the intelligent FLC is compared with the performance of a FLC with predefined parameters and three simple fixed-time controller. Simulation results indicate that intelligent FLC significantly reduces the total delay in the network compared to the fixed-time method and FLC with manual parameter setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spike sorting plays an important role in analysing electrophysiological data and understanding neural functions. Developing spike sorting methods that are highly accurate and computationally inexpensive is always a challenge in the biomedical engineering practice. This paper proposes an automatic unsupervised spike sorting method using the landmark-based spectral clustering (LSC) method in connection with features extracted by the locality preserving projection (LPP) technique. Gap statistics is employed to evaluate the number of clusters before the LSC can be performed. Experimental results show that LPP spike features are more discriminative than those of the popular wavelet transformation (WT). Accordingly, the proposed method LPP-LSC demonstrates a significant dominance compared to the existing method that is the combination between WT feature extraction and the superparamagnetic clustering. LPP and LSC are both linear algorithms that help reduce computational burden and thus their combination can be applied into realtime spike analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic Resonance images (MRI) do not only exhibit sparsity but their sparsity take a certain predictable shape which is common for all kinds of images. That region based localised sparsity can be used to de-noise MR images from random thermal noise. This paper present a simple framework to exploit sparsity of MR images for image de-noising. As, noise in MR images tends to change its shape based on contrast level and signal itself, the proposed method is independent of noise shape and type and it can be used in combination with other methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urban traffic as one of the most important challenges in modern city life needs practically effective and efficient solutions. Artificial intelligence methods have gained popularity for optimal traffic light control. In this paper, a review of most important works in the field of controlling traffic signal timing, in particular studies focusing on Q-learning, neural network, and fuzzy logic system are presented. As per existing literature, the intelligent methods show a higher performance compared to traditional controlling methods. However, a study that compares the performance of different learning methods is not published yet. In this paper, the aforementioned computational intelligence methods and a fixed-time method are implemented to set signals times and minimize total delays for an isolated intersection. These methods are developed and compared on a same platform. The intersection is treated as an intelligent agent that learns to propose an appropriate green time for each phase. The appropriate green time for all the intelligent controllers are estimated based on the received traffic information. A comprehensive comparison is made between the performance of Q-learning, neural network, and fuzzy logic system controller for two different scenarios. The three intelligent learning controllers present close performances with multiple replication orders in two scenarios. On average Q-learning has 66%, neural network 71%, and fuzzy logic has 74% higher performance compared to the fixed-time controller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear, noisy and outlier characteristics of electroencephalography (EEG) signals inspire the employment of fuzzy logic due to its power to handle uncertainty. This paper introduces an approach to classify motor imagery EEG signals using an interval type-2 fuzzy logic system (IT2FLS) in a combination with wavelet transformation. Wavelet coefficients are ranked based on the statistics of the receiver operating characteristic curve criterion. The most informative coefficients serve as inputs to the IT2FLS for the classification task. Two benchmark datasets, named Ia and Ib, downloaded from the brain-computer interface (BCI) competition II, are employed for the experiments. Classification performance is evaluated using accuracy, sensitivity, specificity and F-measure. Widely-used classifiers, including feedforward neural network, support vector machine, k-nearest neighbours, AdaBoost and adaptive neuro-fuzzy inference system, are also implemented for comparisons. The wavelet-IT2FLS method considerably dominates the comparable classifiers on both datasets, and outperforms the best performance on the Ia and Ib datasets reported in the BCI competition II by 1.40% and 2.27% respectively. The proposed approach yields great accuracy and requires low computational cost, which can be applied to a real-time BCI system for motor imagery data analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic congestion in urban roads is one of the biggest challenges of 21 century. Despite a myriad of research work in the last two decades, optimization of traffic signals in network level is still an open research problem. This paper for the first time employs advanced cuckoo search optimization algorithm for optimally tuning parameters of intelligent controllers. Neural Network (NN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are two intelligent controllers implemented in this study. For the sake of comparison, we also implement Q-learning and fixed-time controllers as benchmarks. Comprehensive simulation scenarios are designed and executed for a traffic network composed of nine four-way intersections. Obtained results for a few scenarios demonstrate the optimality of trained intelligent controllers using the cuckoo search method. The average performance of NN, ANFIS, and Q-learning controllers against the fixed-time controller are 44%, 39%, and 35%, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Luke's work addresses issue of robustly attenuating multi-source noise from surface EEG signals using a novel Adaptive-Multiple-Reference Least-Means-Squares filter (AMR-LMS). In practice, the filter successfully removes electrical interference and muscle noise generated during movement which contaminates EEG, allowing subjects to maintain maximum mobility throughout signal acquisition and during the use of a Brain Computer Interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pattern of tonic and phasic components in an EMG signal reflects the underlying behaviour of the central nervous system (CNS) in controlling the musculature. One avenue for gaining a better understanding of this behaviour is to seek a quantitative characterisation of these phasic and tonic components. We propose that these signal characteristics can range between unvarying, tonic and intermittent, phasic activation through a continuum of EMG amplitude modulation. In this paper, we present two new algorithms for quantifying amplitude modulation: a linear-envelope approach, and a mathematical morphology approach. In addition we present an algorithm for synthesising EMG signals with known amplitude modulation. The efficacy of the synthesis algorithm is demonstrated using real EMG data. We present an evaluation and comparison of the two algorithms for quantifying amplitude modulation based on synthetic data generated by the proposed synthesis algorithm. The results demonstrate that the EMG synthesis parameters represent 91.9% and 96.2% of the variance of linear-envelopes extracted from lumbo-pelvic muscle EMG signals collected from subjects performing a repetitive-movement task. This depended, however, on the muscle and movement-speed considered (F=4.02, p<0.001). Coefficients of determination between input and output amplitude modulation variables were used to quantify the accuracy of the linear-envelope and morphological signal processing algorithms. The linear-envelope algorithm exhibited higher coefficients of determination than the most accurate morphological approach (and hence greater accuracy, T=8.16, p<0.001). Similarly, the standard deviation of the coefficients of determination was 1.691 times smaller (p<0.001). This signal processing algorithm represents a novel tool for the quantification of amplitude modulation in continuous EMG signals and can be used in the study of CNS motor control of the musculature in repetitive-movement tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alloparental care by distant/nonkin that accrue few kin-selected benefits requires direct fitness benefits to evolve. The pay-to-stay hypothesis, under which helpers contribute to alloparental care to avoid being expelled from the group by dominant individuals, offers one such explanation. Here, we investigated 2 key predictions derived from the pay-to-stay hypothesis using the chestnut-crowed babbler, Pomatostomus ruficeps, a cooperatively breeding bird where helping by distant/nonkin is common (18% of nonbreeding helpers). First, we found no indication that distant or nonkin male helpers advertised their contributions toward the primary male breeder. Helpers unrelated to both breeders were unresponsive to provisioning rates of the dominant male, whereas helpers that were related to either the breeding male or to both members of the pair were responsive. In addition, unrelated male helpers did not advertise their contributions to provisioning by disproportionately synchronizing their provisioning events with those of the primary male breeder or by provisioning nestlings immediately after him. Second, no helper, irrespective of its relatedness to the dominant breeders, received aggression when released back into the group following temporary removal for 1-2 days. We therefore find no compelling support for the hypothesis that pay-to-stay mechanisms account for the cooperative behavior of unrelated males in chestnut-crowned babblers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015, International Society of Musculoskeletal and Neuronal Interactions. All right reserved. The adaptation and re-adaptation process of the intervertebral disc (IVD) to prolonged bedrest is important for understanding IVD physiology and IVD herniations in astronauts. Little information is available on changes in IVD composition. In this study, 24 male subjects underwent 60-day bedrest and In/Out Phase magnetic resonance imaging sequences were performed to evaluate IVD shape and water signal intensity. Scanning was performed before bedrest (baseline), twice during bedrest, and three, six and twenty-four months after bedrest. Area, signal intensity, average height, and anteroposterior diameter of the lumbar L3/4 and L4/5 IVDs were measured. At the end of bedrest, disc height and area were significantly increased with no change in water signal intensity. After bedrest, we observed reduced IVD signal intensity three months (p=0.004 versus baseline), six months (p=0.003 versus baseline), but not twenty-four months (p=0.25 versus baseline) post-bedrest. At these same time points post-bedrest, IVD height and area remained increased. The reduced lumbar IVD water signal intensity in the first months after bedrest implies a reduction of glycosaminoglycans and/or free water in the IVD. Subsequently, at two years after bedrest, IVD hydration status returned towards pre-bedrest levels, suggesting a gradual, but slow, re-adaptation process of the IVD after prolonged bedrest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract A simple, signal-off and reusable electrochemical biosensor was developed for sensitive and selective detection of mercury(II) based on thymine-mercury(II)-thymine (T-Hg2+-T) complex and the remarkable difference in the affinity of graphene with double strand DNA (ds-DNA) and single strand DNA (ss-DNA). Our system was composed of ferrocene-tagged probe DNA and graphene. Due to the noncovalent assembly, the ferrocene-tagged probe ss-DNA was immobilized on the surface of graphene nanosheets directly and employed to amplify the electrochemical signal. In the presence of Hg2+, the ferrocene-labeled T-rich DNA probe hybridized with target probe to form ds-DNA via the Hg2+-mediated coordination of T-Hg2+-T base pairs. As a result, the duplex DNA complex kept away from the graphene surface due to the weak affinity of graphene and ds-DNA, and the redox current decreased substantially. Meanwhile, the graphene decorated GCE surface was released for the reusability. Under the optimal conditions, the proposed sensor showed a linear concentration range from 25 pM to 10 μM with a detection limit of 5 pM for Hg2+ detection. The strategy afforded exquisite selectivity for Hg2+ against other metal ions in real environmental samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tool condition monitoring is an important factor in ensuring manufacturing efficiency and product quality. Audio signal based methods are a promising technique for condition monitoring. However, the influence of interfering signals and background noise has hindered the use of this technique in production sites. Blind signal separation (BSS) has the potential to solve this problem by recovering the signal of interest out of the observed mixtures, given that the knowledge about the BSS model is available. In this paper, we discuss the development of the BSS model for sheet metal stamping with a mechanical press system, so that the BSS techniques based on this model can be developed in future. This involves conducting a set of specially designed machine operations and developing a novel signal extraction technique. Also, the link between stamping process conditions and the extracted audio signal associated with stamping was successfully demonstrated by conducting a series of trials with different lubrication conditions and levels of tool wear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the development of the cyber-physical systems (CPS), the security analysis of the data therein becomes more and more important. Recently, due to the advantage of joint encryption and compression for data transmission in CPS, the emerging compressed sensing (CS)-based cryptosystem has attracted much attention, where security is of extreme importance. The existing methods only analyze the security of the plaintext under the assumption that the key is absolutely safe. However, for sparse plaintext, the prior sparsity knowledge of the plaintext could be exploited to partly retrieve the key, and then the plaintext, from the ciphertext. So, the existing methods do not provide a satisfactory security analysis. In this paper, it is conducted in the information theory frame, where the plaintext sparsity feature and the mutual information of the ciphertext, key, and plaintext are involved. In addition, the perfect secrecy criteria (Shannon-sense and Wyner-sense) are extended to measure the security. While the security level is given, the illegal access risk is also discussed. It is shown that the CS-based cryptosystem achieves the extended Wyner-sense perfect secrecy, but when the key is used repeatedly, both the plaintext and the key could be conditionally accessed.