851 resultados para Short take-off and landing aircraft.
Resumo:
SnS quantum dot solar cell is fabricated by Successive Ionic Layer Adsorption and Reaction (SILAR) method. SnS layer is optimized by different SILAR cycles of deposition. The particle size increased with the increase in number of SILAR cycles. Cu2S coated FTO is used as counter electrode against the conventional Platinum electrode. On comparison with a cell having a counter electrodeelectrolyte combination of Platinum-Iodine, Cu2S-polysulfide combination is found to improve both the short circuit current and fill factor of the solar cell. A maximum efficiency of 0.54% is obtained with an open circuit voltage of 311 mV and short circuit current density of 4.86 mA/cm. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A new one-pot version of the titled reaction involves heating a mixture of a carbonyl compound, a phenylhydrazine, and the cation exchange resin Amberlite IR 120 in refluxing ethanol. A variety of enolizable aldehydes, and ketones and several substituted phenylhydrazines could thus be converted to the corresponding indoles in excellent yields (70-88%). Reaction times were typically 6-10 h, with the resin being then filtered off and the product isolated after minimal workup.
Resumo:
In this paper, we study breakdown characteristics in shallow-trench isolation (STI)-type drain-extended MOSFETs (DeMOS) fabricated using a low-power 65-nm triple-well CMOS process with a thin gate oxide. Experimental data of p-type STI-DeMOS device showed distinct two-stage behavior in breakdown characteristics in both OFF-and ON-states, unlike the n-type device, causing a reduction in the breakdown voltage and safe operating area. The first-stage breakdown occurs due to punchthrough in the vertical structure formed by p-well, deep n-well, and p-substrate, whereas the second-stage breakdown occurs due to avalanche breakdown of lateral n-well/p-well junction. The breakdown characteristics are also compared with the STI-DeNMOS device structure. Using the experimental results and advanced TCAD simulations, a complete understanding of breakdown mechanisms is provided in this paper for STI-DeMOS devices in advanced CMOS processes.
Resumo:
活塞的热疲劳性能对柴油发动机的全寿命至关重要。由于能量有限和可控性差等缺点,现有实验系统均不能满意地进行活塞热负荷模拟实验。为此,提出并建立了一套激光诱发活塞热负荷的实验系统。该系统通过对激光束的空间整形,使之投射到活塞表面后诱发的温度场分布满足特定要求。基于PROFIBUS-DP现场总线技术实现了系统集成和实验过程的全反馈控制。针对活塞的典型热负荷条件,即高周热疲劳和热冲击分别进行实验,以模拟正常工作循环和“启动一停车”等热负荷或转速突变工况。通过设置加热一冷却周期或上限下限温度,可以获得相应的热负荷模拟实验效果。研究结果表明,采用经光束整形的激光进行活塞热负荷模拟实验具有周期短、可控性好等优点。
Resumo:
A metric representation of DNA sequences is borrowed from symbolic dynamics. In view of this method, the pattern seen in the chaos game representation of DNA sequences is explained as the suppression of certain nucleotide strings in the DNA sequences. Frequencies of short nucleotide strings and suppression of the shortest ones in the DNA sequences can be determined by using the metric representation.
Resumo:
Resumen: El autor de esta colaboración profundiza en una posibilidad que nos orienta a ser protagonistas en la construcción compartida de un presente más fraterno y auténticamente plural. El símbolo guadalupano se ofrece como un modelo que puede ayudar a mejor vivir el momento pastoral de la Teología. El suceso guadalupano sigue acaeciendo y analógicamente nos abre y propone una serie de fecundas precisiones, sugerencias e interrogantes. En tanto símbolo, del cual la Imagen de Nuestra Señora de Guadalupe es su elemento nuclear, plasma e incentiva a encarnar una pragmática evangelizadora. Una dinámica de diálogo, inculturante e inculturador, que anima a dejar empapar lo propio por el Amor Salvador; y a compartirlo, como pueblo, con una actitud cordial y misericordiosa, y dando lugar a lo ajeno y al mestizaje.
Resumo:
This paper extends the recently developed multiplexed model predictive control (MMPC) concept to ensure satisfaction of hard constraints despite the action of persistent, unknown but bounded disturbances. MMPC uses asynchronous control moves on each input channel instead of synchronised moves on all channels. It offers reduced computation, by dividing the online optimisation into a smaller problem for each channel, and potential performance improvements, as the response to a disturbance is quicker, albeit via only one channel. Robustness to disturbances is introduced using the constraint tightening approach, tailored to suit the asynchronous updates of MMPC and the resulting time-varying optimisations. Numerical results are presented, involving a simple mechanical example and an aircraft control example, showing the potential computational and performance benefits of the new robust MMPC.
Resumo:
In this paper, processes in the early stages of vortex motion and the development of flow structure behind an impulsively-started circular cylinder at high Reynolds number are investigated by combining the discrete vortex model with boundary layer theory, considering the separation of incoming flow boundary layer and rear shear layer in the recirculating flow region. The development of flow structure and vortex motion, particularly the formation and development of secondary vortex and a pair of secondary vortices and their effect on the flow field are calculated. The results clearly show that the flow structure and vortices motion went through a series of complicated processes before the symmetric main vortices change into asymmetric: development of main vortices induces secondary vortices; growth of the secondary vortices causes the main vortex sheets to break off and causes the symmetric main vortices to become “free” vortices, while a pair of secondary vortices is formed; then the vortex sheets, after breaking off, gradually extend downstream and the structure of a pair of secondary vortices becomes relaxed. These features of vortex motion look very much like the observed features in some available flow field visualizations. The action of the secondary vortices causes the main vortex sheets to break off and converts the main vortices into free vortices. This should be the immediate cause leading to the instability of the motion of the symmetric main vortices. The flow field structure such as the separation position of boundary layer and rear shear layer, the unsteady pressure distributions and the drag coefficient are calculated. Comparison with other results or experiments is also made.
Resumo:
Published as an article in: Studies in Nonlinear Dynamics & Econometrics, 2004, vol. 8, issue 3, article 6.
Resumo:
Este artículo recoge en gran medida la comunicación presentada en el congreso internacional «The Transparent enterprise. The value of intangibles», que tuvo lugar los días 25 y 26 de noviembre de 2002, publicada en el tomo Best Papers proceedings. Vol. 1. E-know Network (Universidad Autónoma de Madrid).
Resumo:
In this paper, torsion fracture behavior of drawn pearlitic steel wires with different heat treatments was investigated. Samples with different heat treatments was investigated. Samples with different heat treatment conditions were subjected to torsion and tensile tests. The shear strain along the torsion sample after fracture was measured. Fracture surface of wires was examined by Scanning Electron Microscopy. In addition, the method of Differential Scanning Calorimetry was used to characterize the thermodynamic process in the heat treatment. A numerical simulation via finite element method on temperature field evolution for the wire during heat treatment process was performed. The results show that both strain aging and recovery process occur in the material within the temperature range between room temperature and 435 degrees C. It was shown that the ductility measured by the number of twists drops at short heating times and recovers after further heating in the lead bath of 435 degrees C. On the other hand, the strenght of the wire increases at short heating times and decreases after further heating. The microstructure inhomogeneity due to short period of heat treatment, coupled with the gradient characteristics of shear deformation during torsion results in localized shear deformation of the wire. In this situation, shear cracks nucleate between lamella and the wire breaks with low number of twists.