924 resultados para Shannon´s entropy
Resumo:
The aim of this work is to study the features of a simple replicator chemical model of the relation between kinetic stability and entropy production under the action of external perturbations. We quantitatively explore the different paths leading to evolution in a toy model where two independent replicators compete for the same substrate. To do that, the same scenario described originally by Pross (J Phys Org Chem 17:312–316, 2004) is revised and new criteria to define the kinetic stability are proposed. Our results suggest that fast replicator populations are continually favored by the effects of strong stochastic environmental fluctuations capable to determine the global population, the former assumed to be the only acting evolution force. We demonstrate that the process is continually driven by strong perturbations only, and that population crashes may be useful proxies for these catastrophic environmental fluctuations. As expected, such behavior is particularly enhanced under very large scale perturbations, suggesting a likely dynamical footprint in the recovery patterns of new species after mass extinction events in the Earth’s geological past. Furthermore, the hypothesis that natural selection always favors the faster processes may give theoretical support to different studies that claim the applicability of maximum principles like the Maximum Metabolic Flux (MMF) or Maximum Entropy Productions Principle (MEPP), seen as the main goal of biological evolution.
Resumo:
The pulmonary crackling and the formation of liquid bridges are problems that for centuries have been attracting the attention of scientists. In order to study these phenomena, it was developed a canonical cubic lattice-gas like model to explain the rupture of liquid bridges in lung airways [A. Alencar et al., 2006, PRE]. Here, we further develop this model and add entropy analysis to study thermodynamic properties, such as free energy and force. The simulations were performed using the Monte Carlo method with Metropolis algorithm. The exchange between gas and liquid particles were performed randomly according to the Kawasaki dynamics and weighted by the Boltzmann factor. Each particle, which can be solid (s), liquid (l) or gas (g), has 26 neighbors: 6 + 12 + 8, with distances 1, √2 and √3, respectively. The energy of a lattice's site m is calculated by the following expression: Em = ∑k=126 Ji(m)j(k) in witch (i, j) = g, l or s. Specifically, it was studied the surface free energy of the liquid bridge, trapped between two planes, when its height is changed. For that, was considered two methods. First, just the internal energy was calculated. Then was considered the entropy. It was fond no difference in the surface free energy between this two methods. We calculate the liquid bridge force between the two planes using the numerical surface free energy. This force is strong for small height, and decreases as the distance between the two planes, height, is increased. The liquid-gas system was also characterized studying the variation of internal energy and heat capacity with the temperature. For that, was performed simulation with the same proportion of liquid and gas particle, but different lattice size. The scale of the liquid-gas system was also studied, for low temperature, using different values to the interaction Jij.
Resumo:
We consider the Shannon mutual information of subsystems of critical quantum chains in their ground states. Our results indicate a universal leading behavior for large subsystem sizes. Moreover, as happens with the entanglement entropy, its finite-size behavior yields the conformal anomaly c of the underlying conformal field theory governing the long-distance physics of the quantum chain. We study analytically a chain of coupled harmonic oscillators and numerically the Q-state Potts models (Q = 2, 3, and 4), the XXZ quantum chain, and the spin-1 Fateev-Zamolodchikov model. The Shannon mutual information is a quantity easily computed, and our results indicate that for relatively small lattice sizes, its finite-size behavior already detects the universality class of quantum critical behavior.
Resumo:
This work proposes a novel texture descriptor based on fractal theory. The method is based on the Bouligand- Minkowski descriptors. We decompose the original image recursively into four equal parts. In each recursion step, we estimate the average and the deviation of the Bouligand-Minkowski descriptors computed over each part. Thus, we extract entropy features from both average and deviation. The proposed descriptors are provided by concatenating such measures. The method is tested in a classification experiment under well known datasets, that is, Brodatz and Vistex. The results demonstrate that the novel technique achieves better results than classical and state-of-the-art texture descriptors, such as Local Binary Patterns, Gabor-wavelets and co-occurrence matrix.
Resumo:
[EN] Research background and hypothesis. Several attempts have been made to understand some modalities of sport from the point of view of complexity. Most of these studies deal with this phenomenon with regard to the mechanics of the game itself (in isolation). Nevertheless, some research has been conducted from the perspective of competition between teams. Our hypothesis was that for the study of competitiveness levels in the system of league competition our analysis model (Shannon entropy), is a useful and highly sensitive tool to determine the degree of global competitiveness of a league. Research aim. The aim of our study was to develop a model for the analysis of competitiveness level in team sport competitions based on the uncertainty level that might exist for each confrontation. Research methods. Degree of uncertainty or randomness of the competition was analyzed as a factor of competitiveness. It was calculated on the basis of the Shannon entropy. Research results. We studied 17 NBA regular seasons, which showed a fairly steady entropic tendency. There were seasons less competitive (? 0.9800) than the overall average (0.9835), and periods where the competitiveness remained at higher levels (range: 0.9851 to 0.9902). Discussion and conclusions. A league is more competitive when it is more random. Thus, it is harder to predict the fi nal outcome. However, when the competition is less random, the degree of competitiveness will decrease signifi cantly. The NBA is a very competitive league, there is a high degree of uncertainty of knowing the fi nal result.
Resumo:
I have studied entropy profiles obtained in a sample of 24 X-ray objects at high redshift retrieved from the Chandra archive. I have discussed the scaling properties of the entropy S, the correlation between metallicity Z and S, the profiles of the temperature of the gas, Tgas, and performed a comparison between the dark matter 'temperature' and Tgas in order to constrain the non-gravitational processes which affect the thermal history of the gas. Furthermore I have studied the scaling relations between the X-ray quantities and Sunyaev Zel'dovich measurements. I have observed that X-ray laws are steeper than the relations predicted from the adiabatic model. These deviations from expectations based on self-similarity are usually interpreted in terms of feedback processes leading to non-gravitational gas heating, and suggesting a scenario in which the ICM at higher redshift has lower both X-ray luminosity and pressure in the central regions than the expectations from self-similar model. I have also investigated a Bayesian X-ray and Sunyaev Zel'dovich analysis, which allows to study the external regions of the clusters well beyond the volumes resolved with X-ray observations (1/3-1/2 of the virial radius), to measure the deprojected physical cluster properties, like temperature, density, entropy, gas mass and total mass up to the virial radius.
Resumo:
The first part of my thesis presents an overview of the different approaches used in the past two decades in the attempt to forecast epileptic seizure on the basis of intracranial and scalp EEG. Past research could reveal some value of linear and nonlinear algorithms to detect EEG features changing over different phases of the epileptic cycle. However, their exact value for seizure prediction, in terms of sensitivity and specificity, is still discussed and has to be evaluated. In particular, the monitored EEG features may fluctuate with the vigilance state and lead to false alarms. Recently, such a dependency on vigilance states has been reported for some seizure prediction methods, suggesting a reduced reliability. An additional factor limiting application and validation of most seizure-prediction techniques is their computational load. For the first time, the reliability of permutation entropy [PE] was verified in seizure prediction on scalp EEG data, contemporarily controlling for its dependency on different vigilance states. PE was recently introduced as an extremely fast and robust complexity measure for chaotic time series and thus suitable for online application even in portable systems. The capability of PE to distinguish between preictal and interictal state has been demonstrated using Receiver Operating Characteristics (ROC) analysis. Correlation analysis was used to assess dependency of PE on vigilance states. Scalp EEG-Data from two right temporal epileptic lobe (RTLE) patients and from one patient with right frontal lobe epilepsy were analysed. The last patient was included only in the correlation analysis, since no datasets including seizures have been available for him. The ROC analysis showed a good separability of interictal and preictal phases for both RTLE patients, suggesting that PE could be sensitive to EEG modifications, not visible on visual inspection, that might occur well in advance respect to the EEG and clinical onset of seizures. However, the simultaneous assessment of the changes in vigilance showed that: a) all seizures occurred in association with the transition of vigilance states; b) PE was sensitive in detecting different vigilance states, independently of seizure occurrences. Due to the limitations of the datasets, these results cannot rule out the capability of PE to detect preictal states. However, the good separability between pre- and interictal phases might depend exclusively on the coincidence of epileptic seizure onset with a transition from a state of low vigilance to a state of increased vigilance. The finding of a dependency of PE on vigilance state is an original finding, not reported in literature, and suggesting the possibility to classify vigilance states by means of PE in an authomatic and objectic way. The second part of my thesis provides the description of a novel behavioral task based on motor imagery skills, firstly introduced (Bruzzo et al. 2007), in order to study mental simulation of biological and non-biological movement in paranoid schizophrenics (PS). Immediately after the presentation of a real movement, participants had to imagine or re-enact the very same movement. By key release and key press respectively, participants had to indicate when they started and ended the mental simulation or the re-enactment, making it feasible to measure the duration of the simulated or re-enacted movements. The proportional error between duration of the re-enacted/simulated movement and the template movement were compared between different conditions, as well as between PS and healthy subjects. Results revealed a double dissociation between the mechanisms of mental simulation involved in biological and non-biologial movement simulation. While for PS were found large errors for simulation of biological movements, while being more acurate than healthy subjects during simulation of non-biological movements. Healthy subjects showed the opposite relationship, making errors during simulation of non-biological movements, but being most accurate during simulation of non-biological movements. However, the good timing precision during re-enactment of the movements in all conditions and in both groups of participants suggests that perception, memory and attention, as well as motor control processes were not affected. Based upon a long history of literature reporting the existence of psychotic episodes in epileptic patients, a longitudinal study, using a slightly modified behavioral paradigm, was carried out with two RTLE patients, one patient with idiopathic generalized epilepsy and one patient with extratemporal lobe epilepsy. Results provide strong evidence for a possibility to predict upcoming seizures in RTLE patients behaviorally. In the last part of the thesis it has been validated a behavioural strategy based on neurobiofeedback training, to voluntarily control seizures and to reduce there frequency. Three epileptic patients were included in this study. The biofeedback was based on monitoring of slow cortical potentials (SCPs) extracted online from scalp EEG. Patients were trained to produce positive shifts of SCPs. After a training phase patients were monitored for 6 months in order to validate the ability of the learned strategy to reduce seizure frequency. Two of the three refractory epileptic patients recruited for this study showed improvements in self-management and reduction of ictal episodes, even six months after the last training session.
Resumo:
«In altri termini mi sfuggiva e ancora oggi mi sfugge gran parte del significato dell’evoluzione del tempo; come se il tempo fosse una materia che osservo dall’esterno. Questa mancanza di evoluzione è fonte di alcune mie sventure ma anche mi appartiene con gioia.» Aldo Rossi, Autobiografia scientifica. The temporal dimension underpinning the draft of Autobiografia scientifica by Aldo Rossi may be referred to what Lucien Lévy-Bruhl, the well-known French anthropologist, defines as “primitive mentality” and “prelogical” conscience : the book of life has lost its page numbers, even punctuation. For Lévy-Bruhl, but certainly for Rossi, life or its summing up becomes a continuous account of ellipses, gaps, repetitions that may be read from left to right or viceversa, from head to foot or viceversa without distinction. Rossi’s autobiographical writing seems to accept and support the confusion with which memories have been collected, recording them after the order memory gives them in the mental distillation or simply according to the chronological order in which they have happened. For Rossi, the confusion reflects the melting of memory elements into a composite image which is the result of a fusion. He is aware that the same sap pervades all memories he is going to put in order: each of them has got a common denominator. Differences have diminished, almost faded; the quick glance is prevalent over the distinction of each episode. Rossi’s writing is beyond the categories dependent on time: past and present, before and now. For Rossi, the only repetition – the repetition the text will make possible for an indefinite number of times – gives peculiarity to the event. As Gilles Deleuze knows, “things” may only last as “singleness”: more frequent the repetition is, more singular is the memory phenomenon that recurs, because only what is singular magnifies itself and happens endlessly forever. Rossi understands that “to raise the first time to nth forever”, repetition becomes glorification . It may be an autobiography that, celebrating the originality, enhances the memory event in the repetition; in fact it greatly differs from the biographical reproduction, in which each repetition is but a weaker echo, a duller copy, provided with a smaller an smaller power in comparison with the original. Paradoxically, for Deleuze the repetition asserts the originality and singularity of what is repeated. Rossi seems to share the thought expressed by Kierkegaard in the essay Repetition: «The hope is a graceful maiden slipping through your fingers; the memory of an elderly woman, indeed pretty, but never satisfactory if necessary; the repetition is a loved friend you are never tired of, as it is only the new to make you bored. The old never bores you and its presence makes you happy [...] life is but a repetition [...] here is the beauty of life» . Rossi knows well that repetition hints at the lasting stability of cosmic time. Kierkegaard goes on: «The world exists, and it exists as a repetition» . Rossi devotes himself, on purpose and in all conscience, to collect, to inventory and «to review life», his own life, according to a recovery not from the past but of the past: a search work, the «recherche du temps perdu», as Proust entitled his masterpiece on memory. If you want the past time to be not wasted, you must give it presence. «Memoria e specifico come caratteristiche per riconoscere se stesso e ciò che è estraneo mi sembravano le più chiare condizioni e spiegazioni della realtà. Non esiste uno specifico senza memoria, e una memoria che non provenga da un momento specifico; e solo questa unione permette la conoscenza della propria individualità e del contrario (self e non-self)» . Rossi wants to understand himself, his own character; it is really his own character that requires to be understood, to increase its own introspective ability and intelligence. «Può sembrare strano che Planck e Dante associno la loro ricerca scientifica e autobiografica con la morte; una morte che è in qualche modo continuazione di energia. In realtà, in ogni artista o tecnico, il principio della continuazione dell’energia si mescola con la ricerca della felicità e della morte» . The eschatological incipit of Rossi’s autobiography refers to Freud’s thought in the exact circularity of Dante’s framework and in as much exact circularity of the statement of the principle of the conservation of energy: in fact it was Freud to connect repetition to death. For Freud, the desire of repetition is an instinct rooted in biology. The primary aim of such an instinct would be to restore a previous condition, so that the repeated history represents a part of the past (even if concealed) and, relieving the removal, reduces anguish and tension. So, Freud ask himself, what is the most remote state to which the instinct, through the repetition, wants to go back? It is a pre-vital condition, inorganic of the pure entropy, a not-to-be condition in which doesn’t exist any tension; in other words, Death. Rossi, with the theme of death, introduces the theme of circularity which further on refers to the sense of continuity in transformation or, in the opposite way, the transformation in continuity. «[...] la descrizione e il rilievo delle forme antiche permettevano una continuità altrimenti irripetibile, permettevano anche una trasformazione, una volta che la vita fosse fermata in forme precise» . Rossi’s attitude seems to hint at the reflection on time and – in a broad sense – at the thought on life and things expressed by T.S. Eliot in Four Quartets: «Time present and time past / Are both perhaps present in time future, / And time future is contained in time past. / I all time is eternally present / All time is unredeemable. / What might have been is an abstraction / Remaining perpetual possibility / Only in a word of speculation. / What might have been and what has been / Point to one end, which is always present. [...]» . Aldo Rossi’s autobiographical story coincides with the description of “things” and the description of himself through the things in the exact parallel with craft or art. He seems to get all things made by man to coincide with the personal or artistic story, with the consequent immediate necessity of formulating a new interpretation: the flow of things has never met a total stop; all that exists nowadays is but a repetition or a variant of something existing some time ago and so on, without any interruption until the early dawnings of human life. Nevertheless, Rossi must operate specific subdivisions inside the continuous connection in time – of his time – even if limited by a present beginning and end of his own existence. This artist, as an “historian” of himself and his own life – as an auto-biographer – enjoys the privilege to be able to decide if and how to operate the cutting in a certain point rather than in another one, without being compelled to justify his choice. In this sense, his story is a matter very ductile and flexible: a good story-teller can choose any moment to start a certain sequence of events. Yet, Rossi is aware that, beyond the mere narration, there is the problem to identify in history - his own personal story – those flakings where a clean cut enables the separation of events of different nature. In order to do it, he has to make not only an inventory of his own “things”, but also to appeal to authority of the Divina Commedia started by Dante when he was 30. «A trent’anni si deve compiere o iniziare qualcosa di definitivo e fare i conti con la propria formazione» . For Rossi, the poet performs his authority not only in the text, but also in his will of setting out on a mystical journey and handing it down through an exact descriptive will. Rossi turns not only to the authority of poetry, but also evokes the authority of science with Max Plank and his Scientific Autobiography, published, in Italian translation, by Einaudi, 1956. Concerning Planck, Rossi resumes an element seemingly secondary in hit account where the German physicist «[...] risale alle scoperte della fisica moderna ritrovando l’impressione che gli fece l’enunciazione del principio di conservazione dell’energia; [...]» . It is again the act of describing that links Rossi to Planck, it is the description of a circularity, the one of conservation of energy, which endorses Rossi’s autobiographical speech looking for both happiness and death. Rossi seems to agree perfectly to the thought of Planck at the opening of his own autobiography: «The decision to devote myself to science was a direct consequence of a discovery which was never ceased to arouse my enthusiasm since my early youth: the laws of human thought coincide with the ones governing the sequences of the impressions we receive from the world surrounding us, so that the mere logic can enable us to penetrate into the latter one’s mechanism. It is essential that the outer world is something independent of man, something absolute. The search of the laws dealing with this absolute seems to me the highest scientific aim in life» . For Rossi the survey of his own life represents a way to change the events into experiences, to concentrate the emotion and group them in meaningful plots: «It seems, as one becomes older. / That the past has another pattern, and ceases to be a mere sequence [...]» Eliot wrote in Four Quartet, which are a meditation on time, old age and memory . And he goes on: «We had the experience but missed the meaning, / And approach to the meaning restores the experience / In a different form, beyond any meaning [...]» . Rossi restores in his autobiography – but not only in it – the most ancient sense of memory, aware that for at least 15 centuries the Latin word memoria was used to show the activity of bringing back images to mind: the psychology of memory, which starts with Aristotele (De Anima), used to consider such a faculty totally essential to mind. Keith Basso writes: «The thought materializes in the form of “images”» . Rossi knows well – as Aristotele said – that if you do not have a collection of mental images to remember – imagination – there is no thought at all. According to this psychological tradition, what today we conventionally call “memory” is but a way of imagining created by time. Rossi, entering consciously this stream of thought, passing through the Renaissance ars memoriae to reach us gives a great importance to the word and assumes it as a real place, much more than a recollection, even more than a production and an emotional elaboration of images.
Resumo:
The work of this thesis has been focused on the characterization of metallic membranes for the hydrogen purification from steam reforming process and also of perfluorosulphonic acid ionomeric (PFSI) membranes suitable as electrolytes in fuel cell applications. The experimental study of metallic membranes was divided in three sections: synthesis of palladium and silver palladium coatings on porous ceramic support via electroless deposition (ELD), solubility and diffusivity analysis of hydrogen in palladium based alloys (temperature range between 200 and 400 °C up to 12 bar of pressure) and permeation experiments of pure hydrogen and mixtures containing, besides hydrogen, also nitrogen and methane at high temperatures (up to 600 °C) and pressures (up to 10 bar). Sequential deposition of palladium and silver on to porous alumina tubes by ELD technique was carried out using two different procedures: a stirred batch and a continuous flux method. Pure palladium as well as Pd-Ag membranes were produced: the Pd-Ag membranes’ composition is calculated to be close to 77% Pd and 23% Ag by weight which was the target value that correspond to the best performance of the palladium-based alloys. One of the membranes produced showed an infinite selectivity through hydrogen and relatively high permeability value and is suitable for the potential use as a hydrogen separator. The hydrogen sorption in silver palladium alloys was carried out in a gravimetric system on films produced by ELD technique. In the temperature range inspected, up to 400°C, there is still a lack in literature. The experimental data were analyzed with rigorous equations allowing to calculate the enthalpy and entropy values of the Sieverts’ constant; the results were in very good agreement with the extrapolation made with literature data obtained a lower temperature (up to 150 °C). The information obtained in this study would be directly usable in the modeling of hydrogen permeation in Pd-based systems. Pure and mixed gas permeation tests were performed on Pd-based hydrogen selective membranes at operative conditions close to steam-reforming ones. Two membranes (one produced in this work and another produced by NGK Insulators Japan) showed a virtually infinite selectivity and good permeability. Mixture data revealed the existence of non negligible resistances to hydrogen transport in the gas phase. Even if the decrease of the driving force due to polarization concentration phenomena occurs, in principle, in all membrane-based separation systems endowed with high perm-selectivity, an extensive experimental analysis lack, at the moment, in the palladium-based membrane process in literature. Moreover a new procedure has been introduced for the proper comparison of the mass transport resistance in the gas phase and in the membrane. Another object of study was the water vapor sorption and permeation in PFSI membranes with short and long side chains was also studied; moreover the permeation of gases (i.e. He, N2 and O2) in dry and humid conditions was considered. The water vapor sorption showed strong interactions between the hydrophilic groups and the water as revealed from the hysteresis in the sorption-desorption isotherms and thermo gravimetric analysis. The data obtained were used in the modeling of water vapor permeation, that was described as diffusion-reaction of water molecules, and in the humid gases permeation experiments. In the dry gas experiments the permeability and diffusivity was found to increase with temperature and with the equivalent weight (EW) of the membrane. A linear correlation was drawn between the dry gas permeability and the opposite of the equivalent weight of PFSI membranes, based on which the permeability of pure PTFE is retrieved in the limit of high EW. In the other hand O2 ,N2 and He permeability values was found to increase significantly, and in a similar fashion, with water activity. A model that considers the PFSI membrane as a composite matrix with a hydrophilic and a hydrophobic phase was considered allowing to estimate the variation of gas permeability with relative humidity on the basis of the permeability in the dry PFSI membrane and in pure liquid water.
Resumo:
Oktaedrisch koordinierte Übergangsmetalle mit der Elektronenkonfiguration [Ar]3d4 - 3d7 können in zwei unterschiedlichen elektronischen Zuständen existieren: im High-Spin (HS) oder im Low-Spin (LS) Zustand. Zum Beispiel kann Fe(II) in 1A1g (LS) oder 5T2g (HS) Konfiguration auftreten.Besonderes Interesse besteht in der Aufklärung des Mechanismus der kooperativen Wechselwirkung, die den Spinübergang im Festkörper bestimmt. Hierzu müssen zunächst die internen Freiheitsgrade der molekularen Einheiten bekannt sein. Besonders der Beitrag der molekularen Schwingungen zur Entropiedifferenz, die die Triebkraft des Spinübergangs darstellt, ist von entscheidender Bedeutung. Bisher existieren nur wenige detaillierte Untersuchungen zu den Schwingungseigenschaften der Spincrossovermoleküle.In Rahmen der vorliegenden Arbeit wurden die Schwingungseigenschaften einiger Komplexverbindungen, die Spincrossover zeigen, im Detail untersucht. Dazu wurden temperaturabhängige Raman-, Fern- und Mittel-Infrarot-Spektroskopie, Isotopensubstitution und Normalkoordinatenanalysen (NKA) in Verbindung mit Dichtefunktional-Rechnungen (DFT) verwendet.Die gewonnenen Werte der zugeordneten Schwingungsfrequenzen und die bestimmten Kraftkonstantenänderungen können nun zur Verfeinerung von theoretischen Modellen zur Beschreibung des Spinübergangs verwendet werden.
Resumo:
Der Einfluß von Druck auf die Eigenschaften dünner dielektrischer Filme wurde mit Hilfe von Oberflächenplasmonen-Spektroskopie untersucht. Die Arbeit kann aus der Perspektive der Materialcharakterisierung und aus apparativer Sicht betrachtet werden, da z.B. eine neue Hochdruckzelle konstruiert wurde, die kombinierte Oberflächenplasmonen-Elektrochemie Messungen erlaubt. SiO2-Solgel Filme wurden optimiert und auf ihre Widerstandsfähigkeit in Bufferlösungen und ihre Oberflächeneigenschaften hin untersucht. Eine Anwendung lag in der Charakterisierung von thermoresponsiven Acrylsäureisopropylamid Hydrogelen, die einen Volumenphasenübergang aufwiesen, dessen Eigenschaften durch Druck und die Beschränktheit des Films auf die Oberfläche beeinflußt wurden.Die Charakterisierung von DNA Hybridisierungsreaktionen an Oberflächen wurde mit einer Fluoreszenz-erweiterten Hochdruckapparatur durchgeführt. Zunächst wurde die Stabilität der zugrundeliegenden Bindematrix sichergestellt. Bei DNA Einzelsträngen führten Temperatur und Druck zu jeweils verringertem bzw. erhöhtem Signal. Entropie und Änderungen der Lösungsmitteleigenschaften wurden für die Signaländerungen verantwortlich gemacht. Die Eigenschaften der Doppelhelix wurden im Langmuir-Bild beschrieben. Der Brechungsindex von Kohlendioxid wurde bis zu 200 MPa gemessen und mit vorhandenen Gleichungen verglichen. Weiterhin wurde das Schwellverhalten von PMMA in scCO2/MMA-Mischungen untersucht. Mit Druck und MMA-Konzentration nimmt das Polymer vermehrt Kohlendioxid auf. Dadurch schwillt es an und sein Brechungsindex nimmt ab. Berechnungen unter Annahme einer idealen Mixtur ergaben gute qualitative Übereinstimmung mit den Meßwerten.Abschließend wurde eine neue Elektrochemie-Hochdruckzelle vorgestellt, die an Kaliumhexacyanoferrat(III)-(II) getestet wurde. Die Elektropolymerisation von Thiophen optisch untersucht.
Resumo:
The aim of this work is to carry out an applicative, comparative and exhaustive study between several entropy based indicators of independence and correlation. We considered some indicators characterized by a wide and consolidate literature, like mutual information, joint entropy, relative entropy or Kullback Leibler distance, and others, more recently introduced, like Granger, Maasoumi and racine entropy, also called Sρ, or utilized in more restricted domains, like Pincus approximate entropy or ApEn. We studied the behaviour of such indicators applying them to binary series. The series was designed to simulate a wide range of situations in order to characterize indicators limit and capability and to identify, case by case, the more useful and trustworthy ones. Our target was not only to study if such indicators were able to discriminate between dependence and independence because, especially for mutual information and Granger, Maasoumi and Racine, that was already demonstrated and reported in literature, but also to verify if and how they were able to provide information about structure, complexity and disorder of the series they were applied to. Special attention was paid on Pincus approximate entropy, that is said by the author to be able to provide information regarding the level of randomness, regularity and complexity of a series. By means of a focused and extensive research, we furthermore tried to clear the meaning of ApEn applied to a couple of different series. In such situation the indicator is named in literature as cross-ApEn. The cross-ApEn meaning and the interpretation of its results is often not simple nor univocal and the matter is scarcely delved into by literature, thereby users can easily leaded up to a misleading conclusion, especially if the indicator is employed, as often unfortunately it happens, in uncritical manner. In order to plug some cross-ApEn gaps and limits clearly brought out during the experimentation, we developed and applied to the already considered cases a further indicator we called “correspondence index”. The correspondence index is perfectly integrated into the cross-ApEn computational algorithm and it is able to provide, at least for binary data, accurate information about the intensity and the direction of an eventual correlation, even not linear, existing between two different series allowing, in the meanwhile, to detect an eventual condition of independence between the series themselves.
Resumo:
The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.
Resumo:
Sterne mit einer Anfangsmasse zwischen etwa 8 und 25 Sonnenmassen enden ihre Existenz mit einer gewaltigen Explosion, einer Typ II Supernova. Die hierbei entstehende Hoch-Entropie-Blase ist ein Bereich am Rande des sich bildenden Neutronensterns und gilt als möglicher Ort für den r-Prozess. Wegen der hohen Temperatur T innerhalb der Blase ist die Materie dort vollkommen photodesintegriert. Das Verhältnis von Neutronen zu Protonen wird durch die Elektronenhäufigkeit Ye beschrieben. Die thermodynamische Entwicklung des Systems wird durch die Entropie S gegeben. Da die Expansion der Blase schnell vonstatten geht, kann sie als adiabatisch betrachtet werden. Die Entropie S ist dann proportional zu T^3/rho, wobei rho die Dichte darstellt. Die explizite Zeitentwicklung von T und rho sowie die Prozessdauer hängen von Vexp, der Expansionsgeschwindigkeit der Blase, ab. Der erste Teil dieser Dissertation beschäftigt sich mit dem Prozess der Reaktionen mit geladenen Teilchen, dem alpha-Prozess. Dieser Prozess endet bei Temperaturen von etwa 3 mal 10^9 K, dem sogenannten "alpha-reichen" Freezeout, wobei überwiegend alpha-Teilchen, freie Neutronen sowie ein kleiner Anteil von mittelschweren "Saat"-Kernen im Massenbereich um A=100 gebildet werden. Das Verhältnis von freien Neutronen zu Saatkernen Yn/Yseed ist entscheidend für den möglichen Ablauf eines r-Prozesses. Der zweite Teil dieser Arbeit beschäftigt sich mit dem eigentlichen r-Prozess, der bei Neutronenanzahldichten von bis zu 10^27 Neutronen pro cm^3 stattfindet, und innerhalb von maximal 400 ms sehr neutronenreiche "Progenitor"-Isotope von Elementen bis zum Thorium und Uran bildet. Bei dem sich anschliessendem Ausfrieren der Neutroneneinfangreaktionen bei 10^9 K und 10^20 Neutronen pro cm^3 erfolgt dann der beta-Rückzerfall der ursprünglichen r-Prozesskerne zum Tal der Stabilität. Diese Nicht-Gleichgewichts-Phase wird in der vorliegenden Arbeit in einer Parameterstudie eingehend untersucht. Abschliessend werden astrophysikalische Bedingungen definiert, unter denen die gesamte Verteilung der solaren r-Prozess-Isotopenhäufigkeiten reproduziert werden können.
Resumo:
Skalenargumente werden verwendet, um Rod-Coil Copolymere mit fester Zusammensetzung von steifen Stäbchen und flexiblen Ketten zu studieren. In einem selektiven Lösungsmittel, in dem sich nur die Ketten lösen, bildet ein Rod-Coil Multiblock zylinderförmige Micellen aus aggregierten Stäbchen verbunden durch Kettenstücke. Die Stäbchen aggregieren, um Energie zu gewinnen. Dieser Prozeß wird durch den Entropieverlust der flexiblen Ketten ausgeglichen. Das Adsorptionsverhalten von Aggregaten aus parallel aneinandergelagerten, einzelnen Rod-Coil Diblöcken in selektivem Lösungsmittel wird anhand von erweiterten Skalenbetrachtungen diskutiert. Wenn ein solches Aggregat mit den Stäbchen parallel zur Oberfläche adsorbiert, verschieben sich die Stäbchen gegeneinander. Zusätzlich werden die Stabilität der adsorbierten Aggregate und andere mögliche Konfigurationen untersucht. Um einen Rod-Coil Multiblock mit variabler Zusammensetzung zu studieren, wird eine Feldtheorie entwickelt. Jedes Segment kann entweder steif oder flexibel sein. Das System zeigt drei Phasenzustände, offene Kette, amorphe Globule und flüssig-kristalline Globule. Beim Übergang von amorpher zu flüssig-kristalliner Globule steigt der Anteil an steifen Segmenten rapide an. Dieser Übergang wird durch die isotrope Wechselwirkung zwischen den steifen Segmenten und die anisotrope Oberflächenenergie der Globule verursacht.