927 resultados para Serum ferritin
Resumo:
OBJECTIVES: Mannan-binding lectin (MBL) acts as a pattern-recognition molecule directed against oligomannan, which is part of the cell wall of yeasts and various bacteria. We have previously shown an association between MBL deficiency and anti-Saccharomyces cerevisiae mannan antibody (ASCA) positivity. This study aims at evaluating whether MBL deficiency is associated with distinct Crohn's disease (CD) phenotypes. METHODS: Serum concentrations of MBL and ASCA were measured using ELISA (enzyme-linked immunosorbent assay) in 427 patients with CD, 70 with ulcerative colitis, and 76 healthy controls. CD phenotypes were grouped according to the Montreal Classification as follows: non-stricturing, non-penetrating (B1, n=182), stricturing (B2, n=113), penetrating (B3, n=67), and perianal disease (p, n=65). MBL was classified as deficient (<100 ng/ml), low (100-500 ng/ml), and normal (500 ng/ml). RESULTS: Mean MBL was lower in B2 and B3 CD patients (1,503+/-1,358 ng/ml) compared with that in B1 phenotypes (1,909+/-1,392 ng/ml, P=0.013). B2 and B3 patients more frequently had low or deficient MBL and ASCA positivity compared with B1 patients (P=0.004 and P<0.001). Mean MBL was lower in ASCA-positive CD patients (1,562+/-1,319 ng/ml) compared with that in ASCA-negative CD patients (1,871+/-1,320 ng/ml, P=0.038). In multivariate logistic regression modeling, low or deficient MBL was associated significantly with B1 (negative association), complicated disease (B2+B3), and ASCA. MBL levels did not correlate with disease duration. CONCLUSIONS: Low or deficient MBL serum levels are significantly associated with complicated (stricturing and penetrating) CD phenotypes but are negatively associated with the non-stricturing, non-penetrating group. Furthermore, CD patients with low or deficient MBL are significantly more often ASCA positive, possibly reflecting delayed clearance of oligomannan-containing microorganisms by the innate immune system in the absence of MBL.
Resumo:
Ethyl glucuronide (EtG) is a marker of recent alcohol consumption. For the optimization of the analysis of EtG by CZE with indirect absorbance detection, the use of capillaries with permanent and dynamic wall coatings, the composition of the BGE, and various sample preparation procedures, including dilution with water, ultrafiltration, protein precipitation, and SPE, were investigated. Two validated screening assays for the determination of EtG in human serum, a CZE-based approach and an enzyme immunoassay (EIA), are described. The CZE assay uses a coated capillary, 2,4-dimethylglutaric acid as an internal standard, and a pH 4.65 BGE comprising 9 mM nicotinic acid, epsilon-aminocaproic acid and 10% v/v ACN. Proteins are removed via precipitation with ACN prior to analysis and the LOQ is 0.50 mg/L. The EIA is based upon commercial reagents which are promoted for the determination of urinary EtG. Krebs-Ringer solution containing 5% BSA is used as a calibration matrix. All samples are ultrafiltered prior to analysis of the ultrafiltrate on a Mira Plus analyzer. Assay calibration ranged between 0 and 2 mg/L and the upper reference limit was determined to be 0.05 mg/L. Both assays proved to be suitable for the analysis of samples from different individuals. For EtG levels above 0.50 mg/L, good agreement was observed for the comparison of the results of the two methods.
Resumo:
BACKGROUND: Severe brain trauma leads to an activation of the immune system. To this date, neither the exact perturbation of the specific immune reaction induced by the traumatic brain injury (TBI), nor the interactions leading to the infiltration of peripheral immune cells into the brain are fully understood. PATIENTS AND METHODS: Serum was collected from 17 patients with TBI and a long bone fracture, 24 patients with an isolated long bone fracture and from healthy individuals. The effect of the serum on normal human monocytes and T-lymphocytes was tested in vitro by assessing proliferation and expression of surface markers, chemokine receptors and cytokines. RESULTS: Serum collected from patients with a TBI and a long bone fracture increased the expression of the chemokine receptor CCR4 in monocytes when compared to patients with an isolated long bone fracture. Extending this comparison to T-lymphocytes, the serum from TBI patients induced lower proliferation rates and decreased expression of the pro-inflammatory cytokine TNF-alpha, while simultaneously increasing the secretion of immune-modulatory cytokines (IL-4, IL-10 and TGF-beta) (p<0.05). CONCLUSION: Patients with a TBI release currently unknown soluble factors into the circulating blood that up regulate expression of chemokine receptor CCR4 in peripheral blood monocytes whilst concurrently inducing expression of immunosuppressive cytokines by activated T-lymphocytes.
Resumo:
OBJECTIVE: Glycodelin (PP14) is produced by the epithelium of the endometrium and its determination in the serum is used for functional evaluation of this tissue. Given the complex regulation and the combined contraceptive and immunosuppressive roles of glycodelin, the current lack of normal values for its serum concentration in the physiological menstrual cycle, derived from a large sample number, is a problem. We have therefore established reference values from over 600 sera. DESIGN: Retrospective study using banked serum samples. SETTING: University hospital. METHODS: Measurement of blood samples daily or every second day during one full cycle. MAIN OUTCOME MEASURES: Serum concentrations of glycodelin and normal values for every such one- or two-day interval were calculated. Late luteal phase glycodelin levels were compared with ovarian hormones. Follicular phase levels were compared with stimulated cycles from patients undergoing in vitro fertilization. RESULTS: Glycodelin concentrations were low around ovulation. Highest levels were observed at the end of the luteal phase; the glycodelin serum peak was reached 6-8 days after the one for progesterone. Late luteal glycodelin levels correlated negatively with the body mass index and positively with the progesterone level earlier in the secretory (mid-luteal) phase in the same woman. No associations with other ovarian hormones were observed. Follicular phase glycodelin levels were higher in the spontaneous than in the in vitro fertilization cycles. CONCLUSIONS: Normal values taken at two- or one-day intervals demonstrate the very late appearance of high serum glycodelin levels during the physiological menstrual cycle and their correlation with progesterone occurring earlier in the cycle.
Resumo:
Acute or even hyperacute humoral graft rejection, mediated by classical pathway complement activation, occurs in allo- and xenotransplantation due to preformed anti-graft antibodies. Intravenous immunoglobulin (IVIg) preparations can prevent complement-mediated tissue injury and delay hyperacute xenograft rejection. It is known that IgM-enriched IVIg (IVIgM) has a higher capacity to block complement than IVIgG. Different IVIgs were therefore tested for specificity of complement inhibition and effect on anti-bacterial activity of human serum. IVIgM-I (Pentaglobin), 12% IgM), IVIgM-II (IgM-fraction of IVIgM-I, 60% IgM), and three different IVIgG (all >95% IgG) were used. The known complement inhibitor dextran sulfate was used as control. Hemolytic assays were performed to analyze pathway-specificity of complement inhibition. Effects of IVIg on complement deposition on pig cells and Escherichia coli were assessed by flow cytometry and cytotoxicity as well as bactericidal assays. Complement inhibition by IVIgM was specific for the classical pathway, with IC50 values of 0.8 mg/ml for IVIgM-II and 1.7 mg/ml for IVIgM-I in the CH50 assay. Only minimal inhibition of the lectin pathway was seen with IVIgM-II (IC50 15.5 mg/ml); no alternative pathway inhibition was observed. IVIgG did not inhibit complement in any hemolytic assay. Classical pathway complement inhibition by IVIgM was confirmed in an in vitro xenotransplantation model with PK15 cells. In contrast, IVIgM did not inhibit (mainly alternative pathway mediated) killing of E. coli by human serum. In conclusion, IgM-enriched IVIg is a specific inhibitor of the classical complement pathway, leaving the alternative pathway intact, which is an important natural anti-bacterial defense, especially for immunosuppressed patients.
Resumo:
H-ficolin (Hakata antigen, ficolin-3) activates the lectin pathway of complement similar to mannose-binding lectin. However, its impact on susceptibility to infection is currently unknown. This study investigated whether the serum concentration of H-ficolin at diagnosis is associated with fever and neutropenia (FN) in paediatric cancer patients. H-ficolin was measured by time-resolved immunofluorometric assay in serum taken at cancer diagnosis from 94 children treated with chemotherapy. The association of FN episodes with H-ficolin serum concentration was analysed by multivariate Poisson regression. Median concentration of H-ficolin in serum was 26 mg/l (range 6-83). Seven (7%) children had low H-ficolin (< 14 mg/l). During a cumulative chemotherapy exposure time of 82 years, 177 FN episodes were recorded, 35 (20%) of them with bacteraemia. Children with low H-ficolin had a significantly increased risk to develop FN [relative risk (RR) 2.24; 95% confidence interval (CI) 1.38-3.65; P = 0.004], resulting in prolonged duration of hospitalization and of intravenous anti-microbial therapy. Bacteraemia occurred more frequently in children with low H-ficolin (RR 2.82; CI 1.02-7.76; P = 0.045). In conclusion, low concentration of H-ficolin was associated with an increased risk of FN, particularly FN with bacteraemia, in children treated with chemotherapy for cancer. Low H-ficolin thus represents a novel risk factor for chemotherapy-related infections.
Resumo:
Monocarboxylate transporter 8 (MCT8 or SLC16A2) is important for the neuronal uptake of triiodothyronine (T3) in its function as a specific and active transporter of thyroid hormones across the cell membrane, thus being essential for human brain development. We report on a German male with Allan-Herndon-Dudley syndrome presenting with severe intellectual and motor disability, paroxysmal dyskinesia combined with truncal muscular hypotonia, and peripheral muscular hypertonia at his current age of 9 years. Additionally, the patient has a lesion in the left putamen region revealed by magnetic resonance imaging and elevated serum T3 levels. The male appeared to have a hemizygous mutation (R271H) in the MCT8 gene that was sequenced directly from genomic DNA and occurred de novo in the maternal germline, as both his mother and his sister were not carriers of the mutation. Ruling out a common polymorphism, 50 normal individuals of the same ethnic background did not harbour the mutation. The identified MCT8 gene mutation (R271H) is very likely to be the genetic cause for neuronal hypothyroidism despite elevated serum T3 levels.
Resumo:
Hyperkalemia is a common life-threatening problem in hemodialysis patients. Because glycyrrhetinic acid (GA) inhibits the enzyme 11beta-hydroxy-steroid dehydrogenase II and thereby increases cortisol availability to the colonic mineralocorticoid receptor, it has the potential to lower serum potassium concentrations. To test this, 10 patients in a 6 month prospective, double-blind, placebo-controlled crossover study were given cookies or bread rolls supplemented with glycyrrhetinic acid or placebo. Twenty-four-hour blood pressure measurements were performed at baseline and week 6 and 12 of each treatment period. The ratio of plasma cortisol/cortisone was significantly increased in all patients on GA as compared to baseline or placebo, indicating appropriate enzyme inhibition. Nine of the 10 patients had a persistent decrease in predialysis serum potassium concentration. On GA, mean predialysis serum potassium was significantly lower than at baseline or on placebo. On placebo, serum potassium was significantly elevated above the upper limit of normal in 76% compared to 30% of measurements during GA treatment. Furthermore, on this treatment the frequency of severe hyperkalemia significantly decreased from 9% to 0.6%. No differences were found in parameters reflecting sodium retention. Although these studies show that prolonged GA supplementation persistently lowers serum potassium in dialysis patients, a long-term toxicity study will be mandatory before we recommend the routine use of this treatment.
Resumo:
To study the association of the inflammatory markers serum amyloid A (SAA) and C-reactive protein (CRP) with retinal microvascular parameters in hypertensive individuals with and without type 2 diabetes.
Resumo:
Patients with adult GH-deficiency are thought to have an increased risk of cardiovascular disease. Sialic acid (SA) concentrations have been proposed as a marker of atherosclerotic disease probably related to an inflammatory response of the arterial wall. SA as a marker of cardiovascular disease in adult GH-deficiency and its relation to changes in fasting lipid profile and hormone concentrations have not yet been investigated.
Resumo:
Total body water (TBW) is reduced in adult GH deficiency (GHD) largely due to a reduction of extracellular water. It is unknown whether total blood volume (TBV) contributes to the reduced extracellular water in GHD. GH and insulin-like growth factor I (IGF-I) have been demonstrated to stimulate erythropoiesis in vitro, in animal models, and in growing children. Whether GH has a regulatory effect on red cell mass (RCM) in adults is not known. We analyzed body composition by bioelectrical impedance and used standard radionuclide dilution methods to measure RCM and plasma volume (PV) along with measuring full blood count, ferritin, vitamin B12, red cell folate, IGF-I, IGF-binding protein-3, and erythropoietin in 13 adult patients with GHD as part of a 3-month, double blind, placebo-controlled trial of GH (0.036 U/kg.day). TBW and lean body mass significantly increased by 2.5 +/- 0.53 kg (mean +/- SEM; P < 0.004) and 3.4 +/- 0.73 kg (P < 0.004), respectively, and fat mass significantly decreased by 2.4 +/- 0.32 kg (P < 0.001) in the GH-treated group. The baseline RCM of all patients with GHD was lower than the predicted normal values (1635 +/- 108 vs. 1850 +/- 104 mL; P < 0.002). GH significantly increased RCM, PV, and TBV by 183 +/- 43 (P < 0.006), 350 +/- 117 (P < 0.03), and 515 +/- 109 (P < 0.004) mL, respectively. The red cell count increased by 0.36 +/- 0.116 x 10(12)/L (P < 0.03) with a decrease in ferritin levels by 39.1 +/- 4.84 micrograms/L (P < 0.001) after GH treatment. Serum IGF-I and IGF-binding protein-3 concentrations increased by 3.0 +/- 0.43 (P < 0.001) and 1.3 +/- 0.15 (P < 0.001) SD, respectively, but the erythropoietin concentration was unchanged after GH treatment. No significant changes in body composition or blood volume were recorded in the placebo group. Significant positive correlations could be established between changes in TBW and TBV, lean body mass and TBV (r = 0.78; P < 0.04 and r = 0.77; P < 0.04, respectively), and a significant negative correlation existed between changes in fat mass and changes in TBV in the GH-treated group (r = -0.95; P < 0.02). We conclude that 1) erythropoiesis is impaired in GHD; 2) GH stimulates erythropoiesis in adult GHD; and 3) GH increases PV and TBV, which may contribute to the increased exercise performance seen in these patients.
Resumo:
To assess the influence of three different postmenopausal hormone replacement therapies on levels of serum lipids and lipoprotein(a) [Lp(a)].
Resumo:
Although hypoalbuminaemia after injury may result from increased vascular permeability, dilution secondary to crystalloid infusions may contribute significantly. In this double-blind crossover study, the effects of bolus infusions of crystalloids on serum albumin, haematocrit, serum and urinary biochemistry and bioelectrical impedance analysis were measured in healthy subjects. Ten male volunteers received 2-litre infusions of 0.9% (w/v) saline or 5% (w/v) dextrose over 1 h; infusions were carried out on separate occasions, in random order. Weight, haemoglobin, serum albumin, serum and urinary biochemistry and bioelectrical impedance were measured pre-infusion and hourly for 6 h. The serum albumin concentration fell in all subjects (20% after saline; 16% after dextrose) by more than could be explained by dilution alone. This fall lasted more than 6 h after saline infusion, but values had returned to baseline 1 h after the end of the dextrose infusion. Changes in haematocrit and haemoglobin were less pronounced (7.5% after saline; 6.5% after dextrose). Whereas all the water from dextrose was excreted by 2 h after completion of the infusion, only one-third of the sodium and water from the saline had been excreted by 6 h, explaining its persistent diluting effect. Impedances rose after dextrose and fell after saline (P<0.001). Subjects voided more urine (means 1663 and 563 ml respectively) of lower osmolality (means 129 and 630 mOsm/kg respectively) and sodium content (means 26 and 95 mmol respectively) after dextrose than after saline (P<0.001). While an excess water load is excreted rapidly, an excess sodium load is excreted very slowly, even in normal subjects, and causes persistent dilution of haematocrit and serum albumin. The greater than expected change in serum albumin concentration when compared with that of haemoglobin suggests that, while dilution is responsible for the latter, redistribution also has a role in the former. Changes in bioelectrical impedance may reflect the electrolyte content rather than the volume of the infusate, and may be unreliable for clinical purposes.