929 resultados para Serum bone formation markers
Resumo:
Lipoplexes formed by the pEGFP-C3 plasmid DNA (pDNA) and lipid mixtures containing cationic gemini surfactant of the 1,2-bis(hexadecyl dimethyl ammonium) Acmes family referred to as C16CnC16, where n = 2 3, 5, or 12, and the zwitterionic helper lipid, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) have been studied from a wide variety of physical, chemical, and biological standpoints. The study has been carried out using several experimental methods, such as zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), cryo-TEM, gene transfection, cell viability/cytotoxicity, and confocal fluorescence microscopy. As reported recently in a communication (J. Am. Chem. Soc. 2011, 133, 18014), the detailed physicochemical and biological studies confirm that, in the presence of the studied series lipid mixtures, plasmid DNA is compacted with a large number of its associated Na+ counterions. This in turn yields a much lower effective negative charge, q(pDNA)(-), a value that has been experimentally obtained for each mixed lipid mixture. Consequently, the cationic lipid (CL) complexes prepared with pDNA and CL/DOPE mixtures to be used in gene transfection require significantly less amount of CL than the one estimated assuming a value of q(DNA)(-) = -2. This drives to a considerably lower cytotoxicity of the gene vector. Depending on the CL molar composition, alpha, of the lipid mixture, and the effective charge ratio of the lipoplex, rho(eff), the reported SAXS data indicate the presence of two or three structures in the same lipoplex, one in the DOPE-rich region, other in the CL-rich region, and another one present at any CL composition. Cryo-TEM and SAXS studies with C16CnC16/DOPE-pDNA lipoplexes indicate that pDNA is localized between the mixed lipid bilayers of lamellar structures within a monolayer of similar to 2 nm. This is consistent with a highly compacted supercoiled pDNA conformation compared with that of linear DNA. Transfection studies were carried out with HEK293T, HeLa, CHO, U343, and H460 cells. The alpha and rho(eff) values for each lipid mixture were optimized on HEK293T cells for transfection, and using these values, the remaining cells were also transfected in absence (-FBS-FBS) and presence (-FBS+FBS) of serum. The transfection efficiency was higher with the CLs of shorter gemini spacers (n = 2 or 3). Each formulation expressed GFP on pDNA transfection and confocal fluorescence microscopy corroborated the results. C16C2C16/DOPE mixtures were the most efficient toward transfection among all the lipid mixtures and, in presence of serum, even better than the Lipofectamine2000, a commercial transfecting agent Each lipid combination was safe and did not show any significant levels of toxicity. Probably, the presence of two coexisting lamellar structures in lipoplexes synergizes the transfection efficiency of the lipid mixtures which are plentiful in the lipoplexes formed by CLs with short spacer (n = 2, 3) than those with the long spacer (n = 5, 12).
Resumo:
In this study we determined the molecular mechanisms of how homocysteine differentially affects receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG) synthesis in the bone. The results showed that oxidative stress induced by homocysteine deranges insulin-sensitive FOXO1 and MAP kinase signaling cascades to decrease OPG and increase RANKL synthesis in osteoblast cultures. We observed that downregulation of insulin/FOXO1 and p38 MAP kinase signaling mechanisms due to phosphorylation of protein phosphatase 2 A (PP2A) was the key event that inhibited OPG synthesis in homocysteine-treated osteoblast cultures. siRNA knockdown experiments confirmed that FOXO1 is integral to OPG and p38 synthesis. Conversely homocysteine increased RANKL synthesis in osteoblasts through c-Jun/JNK MAP kinase signaling mechanisms independent of FOXO1. In the rat bone milieu, high-methionine diet-induced hyperhomocysteinemia lowered FOXO1 and OPG expression and increased synthesis of proresorptive and inflammatory cytokines such as RANKL, M-CSF, IL-1 alpha, IL-1 beta, G-CSF, GM-CSF, MIP-1 alpha, IFN-gamma, IL-17, and TNF-alpha. Such pathophysiological conditions were exacerbated by ovariectomy. Lowering the serum homocysteine level by a simultaneous supplementation with N-acetylcysteine improved OPG and FOXO1 expression and partially antagonized RANKL and proresorptive cytokine synthesis in the bone milieu. These results emphasize that hyperhomocysteinemia alters the redox regulatory mechanism in the osteoblast by activating PP2A and deranging FOXO1 and MAPK signaling cascades, eventually shifting the OPG:RANKL ratio toward increased osteoclast activity and decreased bone quality (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Background: Six new cationic gemini lipids based on cholesterol possessing different positional combinations of hydroxyethyl (-CH2CH2OH) and oligo-oxyethylene -(CH2CH2O)(n)- moieties were synthesized. For comparison the corresponding monomeric lipid was also prepared. Each new cationic lipid was found to form stable, clear suspensions in aqueous media. Methodology/Principal Findings: To understand the nature of the individual lipid aggregates, we have studied the aggregation properties using transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements and X-ray diffraction (XRD). We studied the lipid/DNA complex (lipoplex) formation and the release of the DNA from such lipoplexes using ethidium bromide. These gemini lipids in presence of a helper lipid, 1, 2-dioleoyl phophatidyl ethanol amine (DOPE) showed significant enhancements in the gene transfection compared to several commercially available transfection agents. Cholesterol based gemini having -CH2-CH2-OH groups at the head and one oxyethylene spacer was found to be the most effective lipid, which showed transfection activity even in presence of high serum levels (50%) greater than Effectene, one of the potent commercially available transfecting agents. Most of these geminis protected plasmid DNA remarkably against DNase I in serum, although the degree of stability was found to vary with their structural features. Conclusions/Significance: -OH groups present on the cationic headgroups in combination with oxyethylene linkers on cholesterol based geminis, gave an optimized combination of new genera of gemini lipids possessing high transfection efficiency even in presence of very high percentage of serum. This property makes them preferential transfection reagents for possible in vivo studies.
Resumo:
Damaged articulating joints can be repaired or replaced with synthetic biomaterials, which can release wear debris due to articulation, leading to the osteolysis. In a recent work, it has been shown that it is possible to achieve a better combination of flexural strength/fracture toughness as well as in vitro bioactivity and cytocompatibility properties in spark plasma sintered hydroxyapatite-titanium (HA-Ti) composites. Although hydroxyapatite and titanium are well documented for their good biocompatibility, nanosized hydroxyapatite (HA) and titanium (Ti) particles can cause severe toxicity to cells. In order to address this issue, fretting wear study of HA-Ti composites under dry and wet (1x SBF, supplemented with 5 g l(-1) bovine serum albumin (BSA)) condition was performed to assess the wear resistance as well as wear debris formation, in vitro. The experimental results reveal one order of magnitude lower wear rate for HA-10 wt% Ti (7.5 x 10(-5) mm(3) N-1 m(-1)) composite than monolithic HA (3.9 x 10(-4) mm(3) N-1 m(-1)) in simulated body fluid. The difference in the tribological properties has been analyzed in the light of phase assemblages and mechanical properties. Overall, the results suggest the potential use of HA-Ti composites over existing HA-based biocomposites in orthopedic as well as dental applications.
Resumo:
We conducted the present study to investigate the therapeutic effects of the antiresorptive agent zoledronic acid (ZOL), alone and in combination with alfacalcidol (ALF), in a rat model of postmenopausal osteoporosis. Female Wistar rats were ovariectomized (OVX) or sham-operated at 3 months of age. Twelve weeks post surgery, rats were randomized into six groups: (1) sham + vehicle, (2) OVX + vehicle, (3) OVX + ZOL (100 mu g/kg, i.v. single dose), (4) OVX + ZOL (50 mu g/kg, i.v. single dose), (5) OVX + ALF (0.5 mu g/kg, oral gauge daily) and (6) OVX + ZOL (50 mu g/kg, i.v. single dose) + ALF (0.5 mu g/kg, oral gauge daily) for 12 weeks. After treatment, we evaluated the mechanical properties of the lumbar vertebra and femoral mid-shaft. Femurs were also tested for bone density, porosity and trabecular micro-architecture. Biochemical markers in serum and urine were also determined. With respect to improvement in the mechanical strength of the lumbar spine and the femoral mid-shaft, the combination treatment of ZOL and ALF was more effective than each administered as a monotherapy. Moreover, combination therapy using ZOL and ALF preserved the trabecular micro-architecture and cortical bone porosity. Furthermore, the combination treatment of ZOL and ALF corrected the decrease in serum calcium and increase in serum alkaline phosphatase and the tartarate-resistant acid phosphatase level better than single-drug therapy using ZOL or ALF in OVX rats. In addition, the combination treatment of ZOL and ALF corrected the increase in urine calcium, phosphorous and creatinine levels better than single-drug therapy using ZOL or ALF in OVX rats. These data suggest that the combination treatment of ZOL and ALF has a therapeutic advantage over each monotherapy for the treatment of osteoporosis.
Resumo:
Toward preparing strong multi-biofunctional materials, poly(ethylenimine) (PEI) conjugated graphene oxide (GO_PEI) was synthesized using poly(acrylic acid) (PAA) as a spacer and incorporated in poly( e-caprolactone) (PCL) at different fractions. GO_PEI significantly promoted the proliferation and formation of focal adhesions in human mesenchymal stem cells (hMSCs) on PCL. GO_PEI was highly potent in inducing stem cell osteogenesis leading to near doubling of alkaline phosphatase expression and mineralization over neat PCL with 5% filler content and was approximate to 50% better than GO. Remarkably, 5% GO_ PEI was as potent as soluble osteoinductive factors. Increased adsorption of osteogenic factors due to the amine and oxygen containing functional groups on GO_ PEI augment stem cell differentiation. GO_ PEI was also highly efficient in imparting bactericidal activity with 85% reduction in counts of E. coli colonies compared to neat PCL at 5% filler content and was more than twice as efficient as GO. This may be attributed to the synergistic effect of the sharp edges of the particles along with the presence of the different chemical moieties. Thus, GO_ PEI based polymer composites can be utilized to prepare bioactive resorbable biomaterials as an alternative to using labile biomolecules for fabricating orthopedic devices for fracture fixation and tissue engineering.
Competitive adsorption between bovine serum albumin and collagen observed by atomic force microscope
Resumo:
Atomic force microscopy (AFM) was used to study the competitive adsorption between bovine serum albumin (BSA) and type I collagen on hydrophilic and hydrophobic silicon wafers. BSA showed a grain shape and the type I collagen displayed fibril-like molecules with relatively homogeneous height and width, characterized with clear twisting (helical formation). These AFM images illustrated that quite a lot of type I collagen appeared in the adsorption layer on hydrophilic surface in a competitive adsorption state, but the adsorption of BSA was more preponderant than that of type I collagen on hydrophobic silicon wafer surface. The experiments showed that the influence of BSA on type I collagen adsorption on hydrophilic surface was less than that on hydrophobic surface.
Resumo:
Background: The adult central nervous system (CNS) contains different populations of immature cells that could possibly be used to repair brain and spinal cord lesions. The diversity and the properties of these cells in the human adult CNS remain to be fully explored. We previously isolated Nestin(+) Sox2(+) neural multipotential cells from the adult human spinal cord using the neurosphere method (i.e. non adherent conditions and defined medium). -- Results: Here we report the isolation and long term propagation of another population of Nestin(+) cells from this tissue using adherent culture conditions and serum. QPCR and immunofluorescence indicated that these cells had mesenchymal features as evidenced by the expression of Snai2 and Twist1 and lack of expression of neural markers such as Sox2, Olig2 or GFAP. Indeed, these cells expressed markers typical of smooth muscle vascular cells such as Calponin, Caldesmone and Acta2 (Smooth muscle actin). These cells could not differentiate into chondrocytes, adipocytes, neuronal and glial cells, however they readily mineralized when placed in osteogenic conditions. Further characterization allowed us to identify the Nkx6.1 transcription factor as a marker for these cells. Nkx6.1 was expressed in vivo by CNS vascular muscular cells located in the parenchyma and the meninges. -- Conclusion: Smooth muscle cells expressing Nestin and Nkx6.1 is the main cell population derived from culturing human spinal cord cells in adherent conditions with serum. Mineralization of these cells in vitro could represent a valuable model for studying calcifications of CNS vessels which are observed in pathological situations or as part of the normal aging. In addition, long term propagation of these cells will allow the study of their interaction with other CNS cells and their implication in scar formation during spinal cord injury.
Resumo:
Background: Vitamin K has been related to glucose metabolism, insulin sensitivity and diabetes. Because inflammation underlies all these metabolic conditions, it is plausible that the potential role of vitamin K in glucose metabolism occurs through the modulation of cytokines and related molecules. The purpose of the study was to assess the associations between dietary intake of vitamin K and peripheral adipokines and other metabolic risk markers related to insulin resistance and type 2 diabetes mellitus. Methods: Cross-sectional and longitudinal assessments of these associations in 510 elderly participants recruited in the PREDIMED centers of Reus and Barcelona (Spain). We determined 1-year changes in dietary phylloquinone intake estimated by food frequency questionnaires, serum inflammatory cytokines and other metabolic risk markers. Results: In the cross-sectional analysis at baseline no significant associations were found between dietary phylloquinone intake and the rest of metabolic risk markers evaluated, with exception of a negative association with plasminogen activator inhibitor-1. After 1-year of follow-up, subjects in the upper tertile of changes in dietary phylloquinone intake showed a greater reduction in ghrelin (-15.0%), glucose-dependent insulinotropic peptide (-12.9%), glucagon-like peptide-1 (-17.6%), IL-6 (-27.9%), leptin (-10.3%), TNF (-26.9%) and visfatin (-24.9%) plasma concentrations than those in the lowest tertile (all p<0.05). Conclusion: These results show that dietary phylloquinone intake is associated with an improvement of cytokines and other markers related to insulin resistance and diabetes, thus extending the potential protection by dietary phylloquinone on chronic inflammatory diseases.
Resumo:
Indivíduos que permanecem longo tempo em cadeira de rodas apresentam importante perda de massa óssea, principalmente nos membros inferiores, possivelmente agravada pela baixa ingestão de cálcio dietético e pelo inadequado estado nutricional de vitamina D. O exercício físico pode contribuir para a manutenção ou aumento da massa óssea em diferentes populações e nos indivíduos com lesão medular pode contribuir para atenuar a perda de massa óssea. O objetivo do presente estudo foi avaliar a influência da prática regular de exercício físico sobre a adequação da massa óssea, indicadores bioquímicos do metabolismo ósseo e estado nutricional de vitamina D em indivíduos com lesão medular cervical há pelo menos um ano. Em vinte e cinco homens de 19 a 56 anos sendo 15 fisicamente ativos e 10 sedentários, foi realizada análise sérica de cálcio, PTH, 25(OH)D, IGF-1, osteocalcina e NTx. As medidas do conteúdo mineral ósseo, densidade mineral óssea (DMO), massa magra e massa gorda foram realizadas por DXA. A pigmentação da pele (constitutiva e por bronzeamento) foi determinada por colorimetria com o objetivo de investigar sua influência sobre o estado de vitamina D. A ingestão habitual de cálcio foi registrada em um questionário de frequência alimentar direcionado para alimentos fonte. As comparações entre os dois grupos foram realizadas pela aplicação do Teste t de Student exceto para as variáveis ósseas que foram realizadas após ajustes pela massa corporal total, tempo de lesão e ingestão de cálcio utilizando-se análise de co-variância. Associações entre as variáveis estudadas foram avaliadas através de análise de correlação de Pearson. Valores de p<0.05 foram considerados significativos. Não foram observadas diferenças estatisticamente significativas entre os grupos para nenhuma variável óssea com exceção do z-score da DMO da coluna lombar, que foi significativamente maior no grupo de indivíduos sedentários (0,9 1,7 vs -0,7 0,8; p<0,05). No entanto, entre os indivíduos ativos, aqueles que iniciaram a prática de exercício físico com menos tempo decorrido após a lesão apresentaram maior DMO do fêmur (r=-0,60; p<0,05). Nos indivíduos ativos, a freqüência do exercício apresentou associação negativa com a concentração sérica de i-PTH (r = -0,50; p =0,05) e positiva com a concentração de 25(OH)D (r= 0,58; p <0,05). Após ajustes pela massa corporal total e tempo de lesão foram observadas associações positivas entre a ingestão diária de cálcio e z-score da DMO da coluna lombar (r = 0,73 e p <0,01) e DMO do rádio (r = 0,56 e p <0,05). Os resultados do presente estudo apontam para um efeito benéfico do exercício físico sobre a massa óssea e o perfil hormonal relacionado ao metabolismo ósseo. O início da prática regular de exercício físico o quanto antes após a lesão parece contribuir para atenuar a perda de massa óssea nos membros inferiores. Além disso, os resultados deste estudo sugerem uma possível potencialização do efeito osteogênico do exercício físico quando combinado a uma adequada ingestão de cálcio.
Resumo:
The increasing use of patterned neural networks in multielectrode arrays and similar devices drives the constant development and evaluation of new biomaterials. Recently, we presented a promising technique to guide neurons and glia reliably and effectively. Parylene-C, a common hydrophobic polymer, was photolithographically patterned on silicon oxide (SiO(2)) and subsequently activated via immersion in serum. In this article, we explore the effects of ultraviolet (UV)-induced oxidation on parylene's ability to pattern neurons and glia. We exposed parylene-C stripe patterns to increasing levels of UV radiation and found a dose-dependent reduction in the total mass of patterned cells, as well as a gradual loss of glial and neuronal conformity to the patterns. In contrast, nonirradiated patterns had superior patterning results and increased presence of cells. The reduced cell adhesion and patterning after the formation of aldehyde and carboxyl groups on UV-radiated parylene-C supports our hypothesis that cell adhesion and growth on parylene is facilitated by hydrophobic adsorption of serum proteins. We conclude that unlike other cell patterning schemes, our technique does not rely on photooxidation of the polymer. Nonetheless, the precise control of oxygenated groups on parylene could pave the way for the differential binding of proteins and other molecules on the surface, aiding in the adhesion of alternative cell types. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.
Resumo:
BACKGROUND: When fresh morselized graft is compacted, as in impaction bone-grafting for revision hip surgery, fat and marrow fluid is either exuded or trapped in the voids between particles. We hypothesized that the presence of incompressible fluid damps and resists compressive forces during impaction and prevents the graft particles from moving into a closer formation, thus reducing the graft strength. In addition, viscous fluid such as fat may act as an interparticle lubricant, thus reducing the interlocking of the particles. METHODS: We performed mechanical shear testing in the laboratory with use of fresh-frozen human femoral-head allografts that had been passed through different orthopaedic bone mills to produce graft of differing particle-size distributions (grading). RESULTS: After compaction of fresh graft, fat and marrow fluid continued to escape on application of normal loads. Washed graft, however, had little lubricating fluid and better contact between the particles, increasing the shear resistance. On mechanical testing, washed graft was significantly (p < 0.001) more resistant to shearing forces than fresh graft was. This feature was consistent for different bone mills that produced graft of different particle-size distributions and shear strengths. CONCLUSIONS: Removal of fat and marrow fluid from milled human allograft by washing the graft allows the production of stronger compacted graft that is more resistant to shear, which is the usual mode of failure. Further research into the optimum grading of particle sizes from bone mills is required.
Resumo:
Background: When fresh morselized graft is compacted, as in impaction bone-grafting for revision hip surgery, fat and marrow fluid is either exuded or trapped in the voids between particles. We hypothesized that the presence of incompressible fluid damps and resists compressive forces during impaction and prevents the graft particles from moving into a closer formation, thus reducing the graft strength. In addition, viscous fluid such as fat may act as an interparticle lubricant, thus reducing the interlocking of the particles. Methods: We performed mechanical shear testing in the laboratory with use of fresh-frozen human femoral-head allografts that had been passed through different orthopaedic bone mills to produce graft of differing particle-size distributions (grading). Results: After compaction of fresh graft, fat and marrow fluid continued to escape on application of normal loads. Washed graft, however, had little lubricating fluid and better contact between the particles, increasing the shear resistance. On mechanical testing, washed graft was significantly (p < 0.001) more resistant to shearing forces than fresh graft was. This feature was consistent for different bone mills that produced graft of different particle-size distributions and shear strengths. Conclusions: Removal of fat and marrow fluid from milled human allograft by washing the graft allows the production of stronger compacted graft that is more resistant to shear, which is the usual mode of failure. Further research into the optimum grading of particle sizes from bone mills is required. Clinical Relevance: Understanding the mechanical properties of milled human allograft is important when impaction grafting is used for mechanical support. A simple means of improving the mechanical strength of graft produced by currently available bone mills, including an intraoperative washing technique, is described.
Resumo:
The objective of this study was to determine the effect of dietary vitamins A, D-3, E, and C on the gonad development, lipid peroxidation, and immune response of yearling rice field eel, Monopterus albus. A 6-wk feeding trial was designed according to an L-16(4(5)) orthogonal design, in which four vitamins, each at four supplementation levels, were arranged. Sixteen diets were mixed with the different vitamin levels and randomly assigned to 16 groups of fish. Increasing dietary vitamin E supplementation level significantly (P <= 0.05) increased the gonadosomatic index and lowered the serum content of malondialdehyde of rice field eel. Increasing dietary vitamin A and C levels also showed similar effect, but the differences were not statistically significant. Serum immunoglobulin M content increased significantly (P <= 0.01) as dietary vitamin C supplementation levels increased. The concentrations of calcium in bones showed significant (P <= 0.05) trend with vitamin D-3 and A supplementation levels, but the bone phosphorus content was not affected by the dietary vitamin levels.
Resumo:
A 11-week growth trial was conducted in a flow-through system with juvenile gibel carp Carassius auratus gibelio to evaluate the effects of gradual replacement of fish meal (FM) by meat and bone meal (MBM) on growth performance, phosphorus (P) and nitrogen (N) loading. Six isonitrogenous (crude protein: 410 g kg(-1)) and isoenergetic (gross energy: 18 kJ g(-1)) diets were formulated. FM was used as the control protein. In the other five diets, 20, 40, 60, 80 and 100% FM protein was substituted with MBM20, MBM40, MBM60, MBM80, MBM100, respectively. Total P content in the diets ranged from 16.0 to 28.3 g kg(-1) and the available P was 5.0-6.6 g kg(-1). The results showed that the best growth was achieved with fish fed on the control diet and MBM20. Final body weight, weight gain, feed efficiency, protein retention efficiency and energy retention efficiency decreased with increased dietary MBM. No significant differences were found in the feeding rate and hepatosomatic index between the groups. Apparent digestibility coefficient (ADC) of dry matter, protein and P decreased with increase in dietary MBM, while there were no significant differences in the ADC of energy. P and N retention decreased linearly while P and N loading increased linearly with the increased dietary MBM levels. No significant differences were observed in the activity of alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase, as well as pyruvate kinase in liver or in serum. Total superoxide dismutase activity in MBM20 was significantly higher than that of MBM100.