903 resultados para Series resonant tank
Resumo:
Possible future changes of clustering and return periods (RPs) of European storm series with high potential losses are quantified. Historical storm series are identified using 40 winters of reanalysis. Time series of top events (1, 2 or 5 year return levels (RLs)) are used to assess RPs of storm series both empirically and theoretically. Additionally, 800 winters of general circulation model simulations for present (1960–2000) and future (2060–2100) climate conditions are investigated. Clustering is identified for most countries, and estimated RPs are similar for reanalysis and present day simulations. Future changes of RPs are estimated for fixed RLs and fixed loss index thresholds. For the former, shorter RPs are found for Western Europe, but changes are small and spatially heterogeneous. For the latter, which combines the effects of clustering and event ranking shifts, shorter RPs are found everywhere except for Mediterranean countries. These changes are generally not statistically significant between recent and future climate. However, the RPs for the fixed loss index approach are mostly beyond the range of pre-industrial natural climate variability. This is not true for fixed RLs. The quantification of losses associated with storm series permits a more adequate windstorm risk assessment in a changing climate.
Resumo:
Empirical Mode Decomposition is presented as an alternative to traditional analysis methods to decompose geomagnetic time series into spectral components. Important comments on the algorithm and its variations will be given. Using this technique, planetary wave modes of 5-, 10-, and 16-day mean periods can be extracted from magnetic field components of three different stations in Germany. In a second step, the amplitude modulation functions of these wave modes can be shown to contain significant contribution from solar cycle variation through correlation with smoothed sunspot numbers. Additionally, the data indicate connections with geomagnetic jerk occurrences, supported by a second set of data providing reconstructed near-Earth magnetic field for 150 years. Usually attributed to internal dynamo processes within the Earth's outer core, the question of who is impacting whom will be briefly discussed here.
Resumo:
Industrial robotic manipulators can be found in most factories today. Their tasks are accomplished through actively moving, placing and assembling parts. This movement is facilitated by actuators that apply a torque in response to a command signal. The presence of friction and possibly backlash have instigated the development of sophisticated compensation and control methods in order to achieve the desired performance may that be accurate motion tracking, fast movement or in fact contact with the environment. This thesis presents a dual drive actuator design that is capable of physically linearising friction and hence eliminating the need for complex compensation algorithms. A number of mathematical models are derived that allow for the simulation of the actuator dynamics. The actuator may be constructed using geared dc motors, in which case the benefits of torque magnification is retained whilst the increased non-linear friction effects are also linearised. An additional benefit of the actuator is the high quality, low latency output position signal provided by the differencing of the two drive positions. Due to this and the linearised nature of friction, the actuator is well suited for low velocity, stop-start applications, micro-manipulation and even in hard-contact tasks. There are, however, disadvantages to its design. When idle, the device uses power whilst many other, single drive actuators do not. Also the complexity of the models mean that parameterisation is difficult. Management of start-up conditions still pose a challenge.
Resumo:
A new series of non-stoichiometric sulfides Ga1−xGexV4S8−δ (0≤x≤1; δ≤0.23) has been synthesized at high temperatures by heating stoichiometric mixtures of the elements in sealed quartz tubes. The samples have been characterized by powder X-ray diffraction, SQUID magnetometry and electrical transport-property measurements. Structural analysis reveals that a solid solution is formed throughout this composition range, whilst thermogravimetric data reveal sulfur deficiency of up to 2.9% in the quaternary phases. Magnetic measurements suggest that the ferromagnetic behavior of the end-member phase GaV4S8 is retained at x≤0.7; samples in this composition range showing a marked increase in magnetization at low temperatures. By contrast Ga0.25Ge0.75V4S8−δ appears to undergo antiferromagnetic ordering at ca. 15 K. All materials with x≠1 are n-type semiconductors whose resistivity falls by almost six orders of magnitude with decreasing Ga content, whilst the end-member phase GeV4S8−δ is a p-type semiconductor. The results demonstrate that the physical properties are determined principally by the degree of electron filling of narrow-band states arising from intracluster V–V interactions.
Resumo:
The Arctic is an important region in the study of climate change, but monitoring surface temperatures in this region is challenging, particularly in areas covered by sea ice. Here in situ, satellite and reanalysis data were utilised to investigate whether global warming over recent decades could be better estimated by changing the way the Arctic is treated in calculating global mean temperature. The degree of difference arising from using five different techniques, based on existing temperature anomaly dataset techniques, to estimate Arctic SAT anomalies over land and sea ice were investigated using reanalysis data as a testbed. Techniques which interpolated anomalies were found to result in smaller errors than non-interpolating techniques. Kriging techniques provided the smallest errors in anomaly estimates. Similar accuracies were found for anomalies estimated from in situ meteorological station SAT records using a kriging technique. Whether additional data sources, which are not currently utilised in temperature anomaly datasets, would improve estimates of Arctic surface air temperature anomalies was investigated within the reanalysis testbed and using in situ data. For the reanalysis study, the additional input anomalies were reanalysis data sampled at certain supplementary data source locations over Arctic land and sea ice areas. For the in situ data study, the additional input anomalies over sea ice were surface temperature anomalies derived from the Advanced Very High Resolution Radiometer satellite instruments. The use of additional data sources, particularly those located in the Arctic Ocean over sea ice or on islands in sparsely observed regions, can lead to substantial improvements in the accuracy of estimated anomalies. Decreases in Root Mean Square Error can be up to 0.2K for Arctic-average anomalies and more than 1K for spatially resolved anomalies. Further improvements in accuracy may be accomplished through the use of other data sources.
Resumo:
A unique series of oligomeric ellagitannins was used to study their interactions with bovine serum albumin (BSA) by isothermal titration calorimetry. Oligomeric ellagitannins, ranging from monomer to heptamer and a mixture of octamer–undecamers, were isolated as individual pure compounds. This series allowed studying the effects of oligomer size and other structural features. The monomeric to trimeric ellagitannins deviated most from the overall trends. The interactions of ellagitannin oligomers from tetramers to octa–undecamers with BSA revealed strong similarities. In contrast to the equilibrium binding constant, enthalpy showed an increasing trend from the dimer to larger oligomers. It is likely that first the macrocyclic part of the ellagitannin binds to the defined binding sites on the protein surface and then the “flexible tail” of the ellagitannin coats the protein surface. The results highlight the importance of molecular flexibility to maximize binding between the ellagitannin and protein surfaces.
Resumo:
Although the sunspot-number series have existed since the mid-19th century, they are still the subject of intense debate, with the largest uncertainty being related to the "calibration" of the visual acuity of individual observers in the past. Daisy-chain regression methods are applied to inter-calibrate the observers which may lead to significant bias and error accumulation. Here we present a novel method to calibrate the visual acuity of the key observers to the reference data set of Royal Greenwich Observatory sunspot groups for the period 1900-1976, using the statistics of the active-day fraction. For each observer we independently evaluate their observational thresholds [S_S] defined such that the observer is assumed to miss all of the groups with an area smaller than S_S and report all the groups larger than S_S. Next, using a Monte-Carlo method we construct, from the reference data set, a correction matrix for each observer. The correction matrices are significantly non-linear and cannot be approximated by a linear regression or proportionality. We emphasize that corrections based on a linear proportionality between annually averaged data lead to serious biases and distortions of the data. The correction matrices are applied to the original sunspot group records for each day, and finally the composite corrected series is produced for the period since 1748. The corrected series displays secular minima around 1800 (Dalton minimum) and 1900 (Gleissberg minimum), as well as the Modern grand maximum of activity in the second half of the 20th century. The uniqueness of the grand maximum is confirmed for the last 250 years. It is shown that the adoption of a linear relationship between the data of Wolf and Wolfer results in grossly inflated group numbers in the 18th and 19th centuries in some reconstructions.
Resumo:
The chapter characterises British ‘Reality TV’ as a hybrid of factual and fictional television genres, as signaled by the more accurate genre designation ‘structured reality’ television. From the 1990s onwards, in order to develop programmes that are attractive to audiences and inexpensive to produce, programme makers have focused on hybrids of dramatic and documentary modes. This chapter argues that many recent Reality TV programmes privilege soap opera’s emphasis on character, storyline and performance. This affects the ways that class authenticity is understood, undermining factual programmes’ usual claim to legitimacy based on reference to a pre-existing reality, and transforming hierarchies that separate highly-valued from low-valued types of programme.
Resumo:
We report our pediatric experience with lacosarnide, a new antiepileptic drug, approved by the US Food and Drug Administration as adjunctive therapy in focal epilepsy in patients more than 17 years old. We retrospectively reviewed charts for lacosamide use and seizure frequency outcome in patients with focal epilepsy (Wilcoxon signed rank test). Sixteen patients (7 boys) were identified (median dose 275 mg daily, 4.7 mg/kg daily; mean age 14.9 years, range 8-21 years). Patients were receiving a median of 2 antiepileptic drugs (interquartile range [IQR] 1.7-3) in addition to having undergone previous epilepsy surgery (n = 3), vagus nerve stimulation (n = 9), and ketogenic diet (n = 3). Causes included structural (encephalomalacia and diffuse encephalitis, 1 each; stroke in 2) and genetic abnormalities (Aarskog and Rett syndromes, 1 each) or cause not known (n = 10). Median seizure frequency at baseline was 57 per month (IQR 7-75), and after a median follow-up of 4 months (range 1-13 months) of receiving lacosamide, it was 12.5 per month (IQR 3-75), (P < 0.01). Six patients (37.5%; 3 seizure free) were classified as having disease that responded to therapy (>= 50% reduction seizure frequency) and 10 as having disease that did not respond to therapy (<50% in 3; increase in 1; unchanged in 6). Adverse events (tics, behavioral disturbance, seizure worsening, and depression with suicidal ideation in 1 patient each) prompted lacosamide discontinuation in 4/16 (25%). This retrospective study of 16 children with drug-resistant focal epilepsy demonstrated good response to adjunctive lacosamide therapy (median seizure reduction of 39.6%; 37.5% with >= 50% seizure reduction) without severe adverse events. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this work, a new theoretical mechanism is presented in which equatorial Rossby and inertio-gravity wave modes may interact with each other through resonance with the diurnal cycle of tropical deep convection. We have adopted the two-layer incompressible equatorial primitive equations forced by a parametric heating that roughly represents deep convection activity in the tropical atmosphere. The heat source was parametrized in the simplest way according to the hypothesis that it is proportional to the lower-troposphere moisture convergence, with the background moisture state function mimicking the structure of the ITCZ. In this context, we have investigated the possibility of resonant interaction between equatorially trapped Rossby and inertio-gravity modes through the diurnal cycle of the background moisture state function. The reduced dynamics of a single resonant duo shows that when this diurnal variation is considered, a Rossby wave mode can undergo significant amplitude modulations when interacting with an inertio-gravity wave mode, which is not possible in the context of the resonant triad non-linear interaction. Therefore, the results suggest that the diurnal variation of the ITCZ can be a possible dynamical mechanism that leads the Rossby waves to be significantly affected by high frequency modes.
Resumo:
Resonant interactions among equatorial waves in the presence of a diurnally varying heat source are studied in the context of the diabatic version of the equatorial beta-plane primitive equations for a motionless, hydrostatic, horizontally homogeneous and stably stratified background atmosphere. The heat source is assumed to be periodic in time and of small amplitude [i.e., O(epsilon)] and is prescribed to roughly represent the typical heating associated with deep convection in the tropical atmosphere. In this context, using the asymptotic method of multiple time scales, the free linear Rossby, Kelvin, mixed Rossby-gravity, and inertio-gravity waves, as well as their vertical structures, are obtained as leading-order solutions. These waves are shown to interact resonantly in a triad configuration at the O(e) approximation, and the dynamics of these interactions have been studied in the presence of the forcing. It is shown that for the planetary-scale wave resonant triads composed of two first baroclinic equatorially trapped waves and one barotropic Rossby mode, the spectrum of the thermal forcing is such that only one of the triad components is resonant with the heat source. As a result, to illustrate the role of the diurnal forcing in these interactions in a simplified fashion, two kinds of triads have been analyzed. The first one refers to triads composed of a k = 0 first baroclinic geostrophic mode, which is resonant with the stationary component of the diurnal heat source, and two dispersive modes, namely, a mixed Rossby-gravity wave and a barotropic Rossby mode. The other class corresponds to triads composed of two first baroclinic inertio-gravity waves in which the highest-frequency wave resonates with a transient harmonic of the forcing. The integration of the asymptotic reduced equations for these selected resonant triads shows that the stationary component of the diurnal heat source acts as an ""accelerator"" for the energy exchanges between the two dispersive waves through the excitation of the catalyst geostrophic mode. On the other hand, since in the second class of triads the mode that resonates with the forcing is the most energetically active member because of the energy constraints imposed by the triad dynamics, the results show that the convective forcing in this case is responsible for a longer time scale modulation in the resonant interactions, generating a period doubling in the energy exchanges. The results suggest that the diurnal variation of tropical convection might play an important role in generating low-frequency fluctuations in the atmospheric circulation through resonant nonlinear interactions.
Resumo:
We perform a statistical study of the process of orbital determination of the HD82943 extrasolar planetary system, using the current observational data set of N = 165 radial velocity (RV) measurements. Our aim is to analyse the dispersion of possible orbital fits leading to residuals compatible with the best solution, and to discuss the sensitivity of the results with respect to both the data set and the error distribution around the best fit. Although some orbital parameters (e.g. semimajor axis) appear well constrained, we show that the best fits for the HD82943 system are not robust, and at present it is not possible to estimate reliable solutions for these bodies. Finally, we discuss the possibility of a third planet, with a mass of 0.35M(Jup) and an orbital period of 900 d. Stability analysis and simulations of planetary migration indicate that such a hypothetical three-planet system could be locked in a double 2/1 mean-motion resonance, similar to the so-called Laplace resonance of the three inner Galilean satellites of Jupiter.
Resumo:
We estimate the conditions for detectability of two planets in a 2/1 mean-motion resonance from radial velocity data, as a function of their masses, number of observations and the signal-to-noise ratio. Even for a data set of the order of 100 observations and standard deviations of the order of a few meters per second, we find that Jovian-size resonant planets are difficult to detect if the masses of the planets differ by a factor larger than similar to 4. This is consistent with the present population of real exosystems in the 2/1 commensurability, most of which have resonant pairs with similar minimum masses, and could indicate that many other resonant systems exist, but are currently beyond the detectability limit. Furthermore, we analyze the error distribution in masses and orbital elements of orbital fits from synthetic data sets for resonant planets in the 2/1 commensurability. For various mass ratios and number of data points we find that the eccentricity of the outer planet is systematically overestimated, although the inner planet`s eccentricity suffers a much smaller effect. If the initial conditions correspond to small-amplitude oscillations around stable apsidal corotation resonances, the amplitudes estimated from the orbital fits are biased toward larger amplitudes, in accordance to results found in real resonant extrasolar systems.
Resumo:
Flickering is a phenomenon related to mass accretion observed among many classes of astrophysical objects. In this paper we present a study of flickering emission lines and the continuum of the cataclysmic variable V3885 Sgr. The flickering behavior was first analyzed through statistical analysis and the power spectra of lightcurves. Autocorrelation techniques were then employed to estimate the flickering timescale of flares. A cross-correlation study between the line and its underlying continuum variability is presented. The cross-correlation between the photometric and spectroscopic data is also discussed. Periodograms, calculated using emission-line data, show a behavior that is similar to those obtained from photometric datasets found in the literature, with a plateau at lower frequencies and a power-law at higher frequencies. The power-law index is consistent with stochastic events. The cross-correlation study indicates the presence of a correlation between the variability on Ha and its underlying continuum. Flickering timescales derived from the photometric data were estimated to be 25 min for two lightcurves and 10 min for one of them. The average timescales of the line flickering is 40 min, while for its underlying continuum it drops to 20 min.