868 resultados para Selection Analysis
Resumo:
The known moss flora of Terra Nova National Park, eastern Newfoundland, comp~ises 210 species. Eighty-two percent of the moss species occurring in Terra Nova are widespread or widespread-sporadic in Newfoundland. Other Newfoundland distributional elements present in the Terra Nova moss flora are the northwestern, southern, southeastern, and disjunct elements, but four of the mosses occurring in Terra Nova appear to belong to a previously unrecognized northeastern element of the Newfoundland flora. The majority (70.9%) of Terra Nova's mosses are of boreal affinity and are widely distributed in the North American coniferous forest belt. An additional 10.5 percent of the Terra Nova mosses are cosmopolitan while 9.5 percent are temperate and 4.8 percent are arctic-montane species. The remaining 4.3 percent of the mosses are of montane affinity, and disjunct between eastern and western North America. In Terra Nova, temperate species at their northern limit are concentrated in balsam fir stands, while arctic-montane species are restricted to exposed cliffs, scree slopes, and coastal exposures. Montane species are largely confined to exposed or freshwater habitats. Inability to tolerate high summer temperatures limits the distributions of both arctic-montane and montane species. In Terra Nova, species of differing phytogeographic affinities co-occur on cliffs and scree slopes. The microhabitat relationships of five selected species from such habitats were evaluated by Discriminant Functions Analysis and Multiple Regression Analysis. The five mosses have distinct and different microhabitats on cliffs and scree slopes in Terra Nova, and abundance of all but one is associated with variation in at least one microhabitat variable. Micro-distribution of Grimmia torquata, an arctic-montane species at its southern limit, appears to be deterJ]lined by sensitivity to high summer temperatures. Both southern mosses at their northern limit (Aulacomnium androgynum, Isothecium myosuroides) appear to be limited by water availability and, possibly, by low winter temperatures. The two species whose distributions extend both north and south or the study area (Encalypta procera, Eurhynchium pulchellum) show no clear relationship with microclimate. Dispersal factors have played a significant role in the development of the Terra Nova moss flora. Compared to the most likely colonizing source (i .e. the rest of the island of Newfoundland), species with small diaspores have colonized the study area to a proportionately much greater extent than have species with large diaspores. Hierarchical log-linear analysis indicates that this is so for all affinity groups present in Terra Nova. The apparent dispersal effects emphasize the comparatively recent glaciation of the area, and may also have been enhanced by anthropogenic influences. The restriction of some species to specific habitats, or to narrowly defined microhabitats, appears to strengthen selection for easily dispersed taxa.
Resumo:
Piotr Omenzetter and Simon Hoell’s work within the Lloyd’s Register Foundation Centre for Safety and Reliability Engineering at the University of Aberdeen is supported by Lloyd’s Register Foundation. The Foundation helps to protect life and property by supporting engineering-related education, public engagement and the application of research.
Resumo:
Cancer comprises a collection of diseases, all of which begin with abnormal tissue growth from various stimuli, including (but not limited to): heredity, genetic mutation, exposure to harmful substances, radiation as well as poor dieting and lack of exercise. The early detection of cancer is vital to providing life-saving, therapeutic intervention. However, current methods for detection (e.g., tissue biopsy, endoscopy and medical imaging) often suffer from low patient compliance and an elevated risk of complications in elderly patients. As such, many are looking to “liquid biopsies” for clues into presence and status of cancer due to its minimal invasiveness and ability to provide rich information about the native tumor. In such liquid biopsies, peripheral blood is drawn from patients and is screened for key biomarkers, chiefly circulating tumor cells (CTCs). Capturing, enumerating and analyzing the genetic and metabolomic characteristics of these CTCs may hold the key for guiding doctors to better understand the source of cancer at an earlier stage for more efficacious disease management.
The isolation of CTCs from whole blood, however, remains a significant challenge due to their (i) low abundance, (ii) lack of a universal surface marker and (iii) epithelial-mesenchymal transition that down-regulates common surface markers (e.g., EpCAM), reducing their likelihood of detection via positive selection assays. These factors potentiate the need for an improved cell isolation strategy that can collect CTCs via both positive and negative selection modalities as to avoid the reliance on a single marker, or set of markers, for more accurate enumeration and diagnosis.
The technologies proposed herein offer a unique set of strategies to focus, sort and template cells in three independent microfluidic modules. The first module exploits ultrasonic standing waves and a class of elastomeric particles for the rapid and discriminate sequestration of cells. This type of cell handling holds promise not only in sorting, but also in the isolation of soluble markers from biofluids. The second module contains components to focus (i.e., arrange) cells via forces from acoustic standing waves and separate cells in a high throughput fashion via free-flow magnetophoresis. The third module uses a printed array of micromagnets to capture magnetically labeled cells into well-defined compartments, enabling on-chip staining and single cell analysis. These technologies can operate in standalone formats, or can be adapted to operate with established analytical technologies, such as flow cytometry. A key advantage of these innovations is their ability to process erythrocyte-lysed blood in a rapid (and thus high throughput) fashion. They can process fluids at a variety of concentrations and flow rates, target cells with various immunophenotypes and sort cells via positive (and potentially negative) selection. These technologies are chip-based, fabricated using standard clean room equipment, towards a disposable clinical tool. With further optimization in design and performance, these technologies might aid in the early detection, and potentially treatment, of cancer and various other physical ailments.
Resumo:
Direct secretion systems which deliver molecules from one cell to another have huge significance in shaping bacterial communities or in determining the outcome of bacterial associations with eukaryotic organisms. This work examines the roles of the Type III Secretion System (T3SS) and the Type VI Secretion System (T6SS) systems of Pseudomonas, a widespread genus including clinical pathogens and biocontrol strains. Bioinformatic analysis of T6SS phylogeny and associated gene content within Pseudomonas identified several T6SS phylogenetic groups, and linked T6SS components VgrG and Hcp encoded outside of T6SS gene loci with their cognate T6SS phylogenetic groups. Remarkably, such “orphan” vgrG and hcp genes were found to occur in diverse, horizontally transferred, operons often containing putative T6SS accessory components and effectors. The prevalence of a widespread superfamily of T6SS lipase effectors (Tle) was assessed in metagenomes from various environments. The abundance of the Tle superfamily and individual families varied between niches, suggesting there is niche specific selection and specialisation of Tle. Experimental work also discovered that P. fluorescens F113 uses the SPI-1 T3SS to avoid amoeboid grazing in mixed populations. This finding may represent a significant aspect of F113 rhizocompetence, and the rhizocompetence of other Rhizobacteria.
Resumo:
In combination of the advantages of both parallel mechanisms and compliant mechanisms, a compliant parallel mechanism with two rotational DOFs (degrees of freedom) is designed to meet the requirement of a lightweight and compact pan-tilt platform. Firstly, two commonly-used design methods i.e. direct substitution and FACT (Freedom and Constraint Topology) are applied to design the configuration of the pan-tilt system, and similarities and differences of the two design alternatives are compared. Then inverse kinematic analysis of the candidate mechanism is implemented by using the pseudo-rigid-body model (PRBM), and the Jacobian related to its differential kinematics is further derived to help designer realize dynamic analysis of the 8R compliant mechanism. In addition, the mechanism’s maximum stress existing within its workspace is tested by finite element analysis. Finally, a method to determine joint damping of the flexure hinge is presented, which aims at exploring the effect of joint damping on actuator selection and real-time control. To the authors’ knowledge, almost no existing literature concerns with this issue.
Resumo:
Key life history traits such as breeding time and clutch size are frequently both heritable and under directional selection, yet many studies fail to document micro-evolutionary responses. One general explanation is that selection estimates are biased by the omission of correlated traits that have causal effects on fitness, but few valid tests of this exist. Here we show, using a quantitative genetic framework and six decades of life-history data on two free-living populations of great tits Parus major, that selection estimates for egg-laying date and clutch size are relatively unbiased. Predicted responses to selection based on the Robertson-Price Identity were similar to those based on the multivariate breeder’s equation, indicating that unmeasured covarying traits were not missing from the analysis. Changing patterns of phenotypic selection on these traits (for laying date, linked to climate change) therefore reflect changing selection on breeding values, and genetic constraints appear not to limit their independent evolution. Quantitative genetic analysis of correlational data from pedigreed populations can be a valuable complement to experimental approaches to help identify whether apparent associations between traits and fitness are biased by missing traits, and to parse the roles of direct versus indirect selection across a range of environments.
Resumo:
One of the global phenomena with threats to environmental health and safety is artisanal mining. There are ambiguities in the manner in which an ore-processing facility operates which hinders the mining capacity of these miners in Ghana. These problems are reviewed on the basis of current socio-economic, health and safety, environmental, and use of rudimentary technologies which limits fair-trade deals to miners. This research sought to use an established data-driven, geographic information (GIS)-based system employing the spatial analysis approach for locating a centralized processing facility within the Wassa Amenfi-Prestea Mining Area (WAPMA) in the Western region of Ghana. A spatial analysis technique that utilizes ModelBuilder within the ArcGIS geoprocessing environment through suitability modeling will systematically and simultaneously analyze a geographical dataset of selected criteria. The spatial overlay analysis methodology and the multi-criteria decision analysis approach were selected to identify the most preferred locations to site a processing facility. For an optimal site selection, seven major criteria including proximity to settlements, water resources, artisanal mining sites, roads, railways, tectonic zones, and slopes were considered to establish a suitable location for a processing facility. Site characterizations and environmental considerations, incorporating identified constraints such as proximity to large scale mines, forest reserves and state lands to site an appropriate position were selected. The analysis was limited to criteria that were selected and relevant to the area under investigation. Saaty’s analytical hierarchy process was utilized to derive relative importance weights of the criteria and then a weighted linear combination technique was applied to combine the factors for determination of the degree of potential site suitability. The final map output indicates estimated potential sites identified for the establishment of a facility centre. The results obtained provide intuitive areas suitable for consideration
Resumo:
The cortisol awakening response (CAR) is typically measured in the domestic setting. Moderate sample timing inaccuracy has been shown to result in erroneous CAR estimates and such inaccuracy has been shown partially to explain inconsistency in the CAR literature. The need for more reliable measurement of the CAR has recently been highlighted in expert consensus guidelines where it was pointed out that less than 6% of published studies provided electronic-monitoring of saliva sampling time in the post-awakening period. Analyses of a merged data-set of published studies from our laboratory are presented. To qualify for selection, both time of awakening and collection of the first sample must have been verified by electronic-monitoring and sampling commenced within 15 min of awakening. Participants (n = 128) were young (median age of 20 years) and healthy. Cortisol values were determined in the 45 min post-awakening period on 215 sampling days. On 127 days, delay between verified awakening and collection of the first sample was less than 3 min (‘no delay’ group); on 45 days there was a delay of 4–6 min (‘short delay’ group); on 43 days the delay was 7–15 min (‘moderate delay’ group). Cortisol values for verified sampling times accurately mapped on to the typical post-awakening cortisol growth curve, regardless of whether sampling deviated from desired protocol timings. This provides support for incorporating rather than excluding delayed data (up to 15 min) in CAR analyses. For this population the fitted cortisol growth curve equation predicted a mean cortisol awakening level of 6 nmols/l (±1 for 95% CI) and a mean CAR rise of 6 nmols/l (±2 for 95% CI). We also modelled the relationship between real delay and CAR magnitude, when the CAR is calculated erroneously by incorrectly assuming adherence to protocol time. Findings supported a curvilinear hypothesis in relation to effects of sample delay on the CAR. Short delays of 4–6 min between awakening and commencement of saliva sampling resulted an overestimated CAR. Moderate delays of 7–15 min were associated with an underestimated CAR. Findings emphasize the need to employ electronic-monitoring of sampling accuracy when measuring the CAR in the domestic setting.
Resumo:
The role of Constitutional Courts in deeply divided societies is complicated by the danger that the salient societal cleavages may influence judicial decision-making and, consequently, undermine judicial independence and impartiality. With reference to the decisions of the Constitutional Court of Bosnia-Herzegovina, this article investigates the influence of ethno-nationalism on judicial behaviour and the extent to which variation in judicial tenure amplifies or dampens that influence. Based on a statistical analysis of an original dataset of the Court’s decisions, we find that the judges do in fact divide predictably along ethno-national lines, at least in certain types of cases, and that these divisions cannot be reduced to a residual loyalty to their appointing political parties. Contrary to some theoretical expectations, however, we find that long-term tenure does little to dampen the influence of ethno-nationalism on judicial behaviour. Moreover, our findings suggest that the longer a judge serves on the Court the more ethno-national affiliation seems to influence her decision-making. We conclude by considering how alternative arrangements for the selection and tenure of judges might help to ameliorate this problem.
Resumo:
This study considers a dual-hop cognitive inter-vehicular relay-assisted communication system where all
communication links are non-line of sight ones and their fading is modelled by the double Rayleigh fading distribution.
Road-side relays (or access points) implementing the decode-and-forward relaying protocol are employed and one of
them is selected according to a predetermined policy to enable communication between vehicles. The performance of
the considered cognitive cooperative system is investigated for Kth best partial and full relay selection (RS) as well as
for two distinct fading scenarios. In the first scenario, all channels are double Rayleigh distributed. In the second
scenario, only the secondary source to relay and relay to destination channels are considered to be subject to double
Rayleigh fading whereas, channels between the secondary transmitters and the primary user are modelled by the
Rayleigh distribution. Exact and approximate expressions for the outage probability performance for all considered RS
policies and fading scenarios are presented. In addition to the analytical results, complementary computer simulated
performance evaluation results have been obtained by means of Monte Carlo simulations. The perfect match between
these two sets of results has verified the accuracy of the proposed mathematical analysis.
Resumo:
Multiuser selection scheduling concept has been recently proposed in the literature in order to increase the multiuser diversity gain and overcome the significant feedback requirements for the opportunistic scheduling schemes. The main idea is that reducing the feedback overhead saves per-user power that could potentially be added for the data transmission. In this work, the authors propose to integrate the principle of multiuser selection and the proportional fair scheduling scheme. This is aimed especially at power-limited, multi-device systems in non-identically distributed fading channels. For the performance analysis, they derive closed-form expressions for the outage probabilities and the average system rate of the delay-sensitive and the delay-tolerant systems, respectively, and compare them with the full feedback multiuser diversity schemes. The discrete rate region is analytically presented, where the maximum average system rate can be obtained by properly choosing the number of partial devices. They optimise jointly the number of partial devices and the per-device power saving in order to maximise the average system rate under the power requirement. Through the authors’ results, they finally demonstrate that the proposed scheme leveraging the saved feedback power to add for the data transmission can outperform the full feedback multiuser diversity, in non-identical Rayleigh fading of devices’ channels.
Resumo:
BACKGROUND: REAL3 (Randomised ECF for Advanced or Locally advanced oesophagogastric cancer 3) was a phase II/III trial designed to evaluate the addition of panitumumab (P) to epirubicin, oxaliplatin and capecitabine (EOC) in untreated advanced oesophagogastric adenocarcinoma, or undifferentiated carcinoma. MAGIC (MRC Adjuvant Gastric Infusional Chemotherapy) was a phase III study which demonstrated that peri-operative epirubicin, cisplatin and infused 5-fluorouracil (ECF) improved survival in early oesophagogastric adenocarcinoma. PATIENTS AND METHODS: Analysis of response rate (RR; the primary end-point of phase II) and biomarkers in the first 200 patients randomised to EOC or modified dose (m) EOC+P in REAL3 was pre-planned to determine if molecular selection for the on-going study was indicated. KRAS, BRAF and PIK3CA mutations and PTEN expression were assessed in pre-treatment biopsies and results correlated with response to mEOC+P. Association between these biomarkers and overall survival (OS) was assessed in MAGIC patients to determine any prognostic effect. RESULTS: RR was 52% to mEOC+P, 48% to EOC. Results from 175 assessable biopsies: mutations in KRAS (5.7%), BRAF (0%), PIK3CA (2.5%) and loss of PTEN expression (15.0%). None of the biomarkers evaluated predicted resistance to mEOC+P. In MAGIC, mutations in KRAS, BRAF and PIK3CA and loss of PTEN (phosphatase and tensin homolog) were found in 6.3%, 1.0%, 5.0% and 10.9%, respectively, and were not associated with survival. CONCLUSIONS: The RR of 52% in REAL3 with mEOC+P met pre-defined criteria to continue accrual to phase III. The frequency of the mutations was too low to exclude any prognostic or predictive effect.
Resumo:
To maintain the pace of development set by Moore's law, production processes in semiconductor manufacturing are becoming more and more complex. The development of efficient and interpretable anomaly detection systems is fundamental to keeping production costs low. As the dimension of process monitoring data can become extremely high anomaly detection systems are impacted by the curse of dimensionality, hence dimensionality reduction plays an important role. Classical dimensionality reduction approaches, such as Principal Component Analysis, generally involve transformations that seek to maximize the explained variance. In datasets with several clusters of correlated variables the contributions of isolated variables to explained variance may be insignificant, with the result that they may not be included in the reduced data representation. It is then not possible to detect an anomaly if it is only reflected in such isolated variables. In this paper we present a new dimensionality reduction technique that takes account of such isolated variables and demonstrate how it can be used to build an interpretable and robust anomaly detection system for Optical Emission Spectroscopy data.
Resumo:
The problem of selecting suppliers/partners is a crucial and important part in the process of decision making for companies that intend to perform competitively in their area of activity. The selection of supplier/partner is a time and resource-consuming task that involves data collection and a careful analysis of the factors that can positively or negatively influence the choice. Nevertheless it is a critical process that affects significantly the operational performance of each company. In this work, trough the literature review, there were identified five broad suppliers selection criteria: Quality, Financial, Synergies, Cost, and Production System. Within these criteria, it was also included five sub-criteria. Thereafter, a survey was elaborated and companies were contacted in order to answer which factors have more relevance in their decisions to choose the suppliers. Interpreted the results and processed the data, it was adopted a model of linear weighting to reflect the importance of each factor. The model has a hierarchical structure and can be applied with the Analytic Hierarchy Process (AHP) method or Simple Multi-Attribute Rating Technique (SMART). The result of the research undertaken by the authors is a reference model that represents a decision making support for the suppliers/partners selection process.
Resumo:
Purpose – The objective of this exploratory study is to investigate the “flow-through” or relationship between top-line measures of hotel operating performance (occupancy, average daily rate and revenue per available room) and bottom-line measures of profitability (gross operating profit and net operating income), before and during the recent great recession. Design/methodology/approach – This study uses data provided by PKF Hospitality Research for the period from 2007-2009. A total of 714 hotels were analyzed and various top-line and bottom-line profitability changes were computed using both absolute levels and percentages. Multiple regression analysis was used to examine the relationship between top and bottom line measures, and to derive flow-through ratios. Findings – The results show that average daily rate (ADR) and occupancy are significantly and positively related to gross operating profit per available room (GOPPAR) and net operating income per available room (NOIPAR). The evidence indicates that ADR, rather than occupancy, appears to be the stronger predictor and better measure of RevPAR growth and bottom-line profitability. The correlations and explained variances are also higher than those reported in prior research. Flow-through ratios range between 1.83 and 1.91 for NOIPAR, and between 1.55 and 1.65 for GOPPAR, across all chain-scales. Research limitations/implications – Limitations of this study include the limited number of years in the study period, limited number of hotels in a competitive set, and self-selection of hotels by the researchers. Practical implications – While ADR and occupancy work in combination to drive profitability, the authors' study shows that ADR is the stronger predictor of profitability. Hotel managers can use flow-through ratios to make financial forecasts, or use them as inputs in valuation models, to forecast future profitability. Originality/value – This paper extends prior research on the relationship between top-line measures and bottom-line profitability and serves to inform lodging owners, operators and asset managers about flow-through ratios, and how these ratios impact hotel profitability.