988 resultados para Search procedures
Resumo:
Assembly job shop scheduling problem (AJSP) is one of the most complicated combinatorial optimization problem that involves simultaneously scheduling the processing and assembly operations of complex structured products. The problem becomes even more complicated if a combination of two or more optimization criteria is considered. This thesis addresses an assembly job shop scheduling problem with multiple objectives. The objectives considered are to simultaneously minimizing makespan and total tardiness. In this thesis, two approaches viz., weighted approach and Pareto approach are used for solving the problem. However, it is quite difficult to achieve an optimal solution to this problem with traditional optimization approaches owing to the high computational complexity. Two metaheuristic techniques namely, genetic algorithm and tabu search are investigated in this thesis for solving the multiobjective assembly job shop scheduling problems. Three algorithms based on the two metaheuristic techniques for weighted approach and Pareto approach are proposed for the multi-objective assembly job shop scheduling problem (MOAJSP). A new pairing mechanism is developed for crossover operation in genetic algorithm which leads to improved solutions and faster convergence. The performances of the proposed algorithms are evaluated through a set of test problems and the results are reported. The results reveal that the proposed algorithms based on weighted approach are feasible and effective for solving MOAJSP instances according to the weight assigned to each objective criterion and the proposed algorithms based on Pareto approach are capable of producing a number of good Pareto optimal scheduling plans for MOAJSP instances.
Resumo:
Study on variable stars is an important topic of modern astrophysics. After the invention of powerful telescopes and high resolving powered CCD’s, the variable star data is accumulating in the order of peta-bytes. The huge amount of data need lot of automated methods as well as human experts. This thesis is devoted to the data analysis on variable star’s astronomical time series data and hence belong to the inter-disciplinary topic, Astrostatistics. For an observer on earth, stars that have a change in apparent brightness over time are called variable stars. The variation in brightness may be regular (periodic), quasi periodic (semi-periodic) or irregular manner (aperiodic) and are caused by various reasons. In some cases, the variation is due to some internal thermo-nuclear processes, which are generally known as intrinsic vari- ables and in some other cases, it is due to some external processes, like eclipse or rotation, which are known as extrinsic variables. Intrinsic variables can be further grouped into pulsating variables, eruptive variables and flare stars. Extrinsic variables are grouped into eclipsing binary stars and chromospheri- cal stars. Pulsating variables can again classified into Cepheid, RR Lyrae, RV Tauri, Delta Scuti, Mira etc. The eruptive or cataclysmic variables are novae, supernovae, etc., which rarely occurs and are not periodic phenomena. Most of the other variations are periodic in nature. Variable stars can be observed through many ways such as photometry, spectrophotometry and spectroscopy. The sequence of photometric observa- xiv tions on variable stars produces time series data, which contains time, magni- tude and error. The plot between variable star’s apparent magnitude and time are known as light curve. If the time series data is folded on a period, the plot between apparent magnitude and phase is known as phased light curve. The unique shape of phased light curve is a characteristic of each type of variable star. One way to identify the type of variable star and to classify them is by visually looking at the phased light curve by an expert. For last several years, automated algorithms are used to classify a group of variable stars, with the help of computers. Research on variable stars can be divided into different stages like observa- tion, data reduction, data analysis, modeling and classification. The modeling on variable stars helps to determine the short-term and long-term behaviour and to construct theoretical models (for eg:- Wilson-Devinney model for eclips- ing binaries) and to derive stellar properties like mass, radius, luminosity, tem- perature, internal and external structure, chemical composition and evolution. The classification requires the determination of the basic parameters like pe- riod, amplitude and phase and also some other derived parameters. Out of these, period is the most important parameter since the wrong periods can lead to sparse light curves and misleading information. Time series analysis is a method of applying mathematical and statistical tests to data, to quantify the variation, understand the nature of time-varying phenomena, to gain physical understanding of the system and to predict future behavior of the system. Astronomical time series usually suffer from unevenly spaced time instants, varying error conditions and possibility of big gaps. This is due to daily varying daylight and the weather conditions for ground based observations and observations from space may suffer from the impact of cosmic ray particles. Many large scale astronomical surveys such as MACHO, OGLE, EROS, xv ROTSE, PLANET, Hipparcos, MISAO, NSVS, ASAS, Pan-STARRS, Ke- pler,ESA, Gaia, LSST, CRTS provide variable star’s time series data, even though their primary intention is not variable star observation. Center for Astrostatistics, Pennsylvania State University is established to help the astro- nomical community with the aid of statistical tools for harvesting and analysing archival data. Most of these surveys releases the data to the public for further analysis. There exist many period search algorithms through astronomical time se- ries analysis, which can be classified into parametric (assume some underlying distribution for data) and non-parametric (do not assume any statistical model like Gaussian etc.,) methods. Many of the parametric methods are based on variations of discrete Fourier transforms like Generalised Lomb-Scargle peri- odogram (GLSP) by Zechmeister(2009), Significant Spectrum (SigSpec) by Reegen(2007) etc. Non-parametric methods include Phase Dispersion Minimi- sation (PDM) by Stellingwerf(1978) and Cubic spline method by Akerlof(1994) etc. Even though most of the methods can be brought under automation, any of the method stated above could not fully recover the true periods. The wrong detection of period can be due to several reasons such as power leakage to other frequencies which is due to finite total interval, finite sampling interval and finite amount of data. Another problem is aliasing, which is due to the influence of regular sampling. Also spurious periods appear due to long gaps and power flow to harmonic frequencies is an inherent problem of Fourier methods. Hence obtaining the exact period of variable star from it’s time series data is still a difficult problem, in case of huge databases, when subjected to automation. As Matthew Templeton, AAVSO, states “Variable star data analysis is not always straightforward; large-scale, automated analysis design is non-trivial”. Derekas et al. 2007, Deb et.al. 2010 states “The processing of xvi huge amount of data in these databases is quite challenging, even when looking at seemingly small issues such as period determination and classification”. It will be beneficial for the variable star astronomical community, if basic parameters, such as period, amplitude and phase are obtained more accurately, when huge time series databases are subjected to automation. In the present thesis work, the theories of four popular period search methods are studied, the strength and weakness of these methods are evaluated by applying it on two survey databases and finally a modified form of cubic spline method is intro- duced to confirm the exact period of variable star. For the classification of new variable stars discovered and entering them in the “General Catalogue of Vari- able Stars” or other databases like “Variable Star Index“, the characteristics of the variability has to be quantified in term of variable star parameters.
Resumo:
Gestaltpädagogische Elemente in der Berufspädagogik Potentielle Erträge gestaltpädagogischer Ansätze für die berufliche Bildung - Konzepte, Fundierung, Realisierungsformen - Zusammenfassung: Berufsausbilder, Berufsschullehrer und Trainer in der Aus- und Weiterbildung werden heute mit vielfältigen Veränderungen konfrontiert. Aufgrund des Technikeinsatzes zeigt sich in vie-len Unternehmen ein Wandel der beruflich organisierten Arbeit. Die wirtschaftlichen, techni-schen und sozialen Systemzusammenhänge werden zunehmend komplexer, dynamischer, enger vernetzt und normativ unbestimmter. Die technologische Entwicklung, vor allem der Kommunikationsmedien, hat eine Temposteigerung der Informationsübermittlung zur Folge, die gleichzeitig das Wissen erhöht. Mit der Forderung nach Schlüsselqualifikationen und der Wiederentdeckung ganzheitlicher Arbeitssituationen ist das Bestreben nach Bildungskonzep-ten verbunden, die mit der Herausbildung von Kompetenzen, wie vernetztes, system- und handlungsbezogenes Denken in komplexen Kontexten, Abstraktionsvermögen, systemati-sches Verständnis von Organisationsinterdependenzen, Selbstständigkeit, Selbstverantwor-tung, soziale, methodische und kommunikative Kompetenz und Innovationskraft korrespon-dieren. Unter dem Blickwinkel der Gestaltpädagogik fällt auf, dass die Berufspädagogik Methoden und Techniken in der betrieblichen Aus- und Weiterbildung nutzt, die wesentliche Elemente der Gestaltpädagogik enthalten. Eine konkrete theoretische Fundierung und Einbettung in die Berufspädagogik fehlt jedoch bisher. Die primäre Zielsetzung der Arbeit ist, die theoretischen Grundlagen der Gestaltpädagogik herauszuarbeiten und sie mit der Berufspädagogik in Verbindung zu bringen. An Beispielen wird aufgezeigt, wie gestaltpädagogische Aspekte in die betriebliche Aus- und Weiterbildung einfließen. Dabei werden unter anderem auch die Grenzen und Potentiale der Gestaltpädago-gik für die Berufspädagogik betrachtet. Die theoretische und praktische Relevanz der Arbeit ergibt sich daraus, dass erstmals berufs-pädagogische Vorgehensweisen der Praxis im Hinblick auf gestaltpädagogische Aspekte un-tersucht wurden. Die wesentlichen Forschungsergebnisse dieser Arbeit lassen sich wie folgt zusammenfassen: In der betrieblichen Aus- und Weiterbildung kommen Methoden und Vorgehensweisen zum Einsatz, die oberflächlich betrachtet gestaltpädagogischen Charakter haben. Jedoch werden die gestaltpädagogischen Grundgedanken, wie z.B. eine ganzheitlich umfassende Persönlich-keitsentwicklung, persönlich bedeutsames Lernen, Förderung der sozialen Interaktionsfähig-keit oder die Förderung der Autonomie in der betrieblichen Bildungsarbeit auf ein Minimum reduziert. Die gestaltpädagogischen Methoden und Vorgehensweisen werden überwiegend auf ökonomische Zwecke hin ausgerichtet und funktionalisiert eingesetzt. Man kann sagen, dass sich die betriebliche Praxis mit der Aneinanderreihung von kreativen Übungen zufrieden gibt, und eine Tendenz zu erlebnisaktivierenden Vorgehensweisen zu erkennen ist.
Resumo:
One-electron energy levels and wavelengths have been calculated for Na-like ions whose nuclei carry quarks with additional charges ±e/3, ±2e/3. The calculations are based on relativistic self-consistent field procedures. The deviations from experimental values exhibit regularities which allow an extrapolation for the wavelengths of 3s - 3p, 3s - 4p, 3p - 3d, and 3p - 4s transitions for the nuclear charge Z = 11± 1/3, ±2/3. A number of transitions are found in the region of visible light which could be used in an optical search for quark atoms.
Resumo:
This book argues for novel strategies to integrate engineering design procedures and structural analysis data into architectural design. Algorithmic procedures that recently migrated into the architectural practice are utilized to improve the interface of both disciplines. Architectural design is predominately conducted as a negotiation process of various factors but often lacks rigor and data structures to link it to quantitative procedures. Numerical structural design on the other hand could act as a role model for handling data and robust optimization but it often lacks the complexity of architectural design. The goal of this research is to bring together robust methods from structural design and complex dependency networks from architectural design processes. The book presents three case studies of tools and methods that are developed to exemplify, analyze and evaluate a collaborative work flow.
Resumo:
This report introduces TRANSLUCENT PROCEDURES as a new mechanism for implementing behavioral abstractions. Like an ordinary procedure, a translucent procedure can be invoked, and thus provides an obvious way to capture a BEHAVIOR. Translucent procedures, like ordinary procedures, can be manipulated as first-class objects and combined using functional composition. But unlike ordinary procedures, translucent procedures have structure that can be examined in well-specified non-destructive ways, without invoking the procedure.
Resumo:
This paper describes a system for the computer understanding of English. The system answers questions, executes commands, and accepts information in normal English dialog. It uses semantic information and context to understand discourse and to disambiguate sentences. It combines a complete syntactic analysis of each sentence with a "heuristic understander" which uses different kinds of information about a sentence, other parts of the discourse, and general information about the world in deciding what the sentence means. It is based on the belief that a computer cannot deal reasonably with language unless it can "understand" the subject it is discussing. The program is given a detailed model of the knowledge needed by a simple robot having only a hand and an eye. We can give it instructions to manipulate toy objects, interrogate it about the scene, and give it information it will use in deduction. In addition to knowing the properties of toy objects, the program has a simple model of its own mentality. It can remember and discuss its plans and actions as well as carry them out. It enters into a dialog with a person, responding to English sentences with actions and English replies, and asking for clarification when its heuristic programs cannot understand a sentence through use of context and physical knowledge.
Resumo:
One objective of artificial intelligence is to model the behavior of an intelligent agent interacting with its environment. The environment's transformations can be modeled as a Markov chain, whose state is partially observable to the agent and affected by its actions; such processes are known as partially observable Markov decision processes (POMDPs). While the environment's dynamics are assumed to obey certain rules, the agent does not know them and must learn. In this dissertation we focus on the agent's adaptation as captured by the reinforcement learning framework. This means learning a policy---a mapping of observations into actions---based on feedback from the environment. The learning can be viewed as browsing a set of policies while evaluating them by trial through interaction with the environment. The set of policies is constrained by the architecture of the agent's controller. POMDPs require a controller to have a memory. We investigate controllers with memory, including controllers with external memory, finite state controllers and distributed controllers for multi-agent systems. For these various controllers we work out the details of the algorithms which learn by ascending the gradient of expected cumulative reinforcement. Building on statistical learning theory and experiment design theory, a policy evaluation algorithm is developed for the case of experience re-use. We address the question of sufficient experience for uniform convergence of policy evaluation and obtain sample complexity bounds for various estimators. Finally, we demonstrate the performance of the proposed algorithms on several domains, the most complex of which is simulated adaptive packet routing in a telecommunication network.
Resumo:
In this paper, we develop a novel index structure to support efficient approximate k-nearest neighbor (KNN) query in high-dimensional databases. In high-dimensional spaces, the computational cost of the distance (e.g., Euclidean distance) between two points contributes a dominant portion of the overall query response time for memory processing. To reduce the distance computation, we first propose a structure (BID) using BIt-Difference to answer approximate KNN query. The BID employs one bit to represent each feature vector of point and the number of bit-difference is used to prune the further points. To facilitate real dataset which is typically skewed, we enhance the BID mechanism with clustering, cluster adapted bitcoder and dimensional weight, named the BID⁺. Extensive experiments are conducted to show that our proposed method yields significant performance advantages over the existing index structures on both real life and synthetic high-dimensional datasets.
Resumo:
In this paper, we present a P2P-based database sharing system that provides information sharing capabilities through keyword-based search techniques. Our system requires neither a global schema nor schema mappings between different databases, and our keyword-based search algorithms are robust in the presence of frequent changes in the content and membership of peers. To facilitate data integration, we introduce keyword join operator to combine partial answers containing different keywords into complete answers. We also present an efficient algorithm that optimize the keyword join operations for partial answer integration. Our experimental study on both real and synthetic datasets demonstrates the effectiveness of our algorithms, and the efficiency of the proposed query processing strategies.
Resumo:
First discussion on compositional data analysis is attributable to Karl Pearson, in 1897. However, notwithstanding the recent developments on algebraic structure of the simplex, more than twenty years after Aitchison’s idea of log-transformations of closed data, scientific literature is again full of statistical treatments of this type of data by using traditional methodologies. This is particularly true in environmental geochemistry where besides the problem of the closure, the spatial structure (dependence) of the data have to be considered. In this work we propose the use of log-contrast values, obtained by a simplicial principal component analysis, as LQGLFDWRUV of given environmental conditions. The investigation of the log-constrast frequency distributions allows pointing out the statistical laws able to generate the values and to govern their variability. The changes, if compared, for example, with the mean values of the random variables assumed as models, or other reference parameters, allow defining monitors to be used to assess the extent of possible environmental contamination. Case study on running and ground waters from Chiavenna Valley (Northern Italy) by using Na+, K+, Ca2+, Mg2+, HCO3-, SO4 2- and Cl- concentrations will be illustrated
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task