953 resultados para Santos estuary


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy contaminant load released into the Northern Dvina River during flooding increased the concentrations of aliphatic (AHC) and polcyclic aromatic (PAH) hydrocarbons in water and bottom sediments. The composition of hydrocarbons was different from that of the summer low flow season. The concentrations of dissolved and particulate AHC ranged from 12 to 106 and from 192 to 599 µg/l, respectively, and bottom sediments contained from 26.2 to 329 µg/g AHC and 4 to 1785 ng/g PAH. As the transformation of AHC occurred at low spring temperatures, the alkane composition was shown to be dominated by terrigenous compounds, whereas more stable PAH showed elevated contents of petrogenic and pyrogenic compounds. It was also shown that the Northern Dvina-Dvina Bay geochemical barrier prevents contaminant input into the White Sea, i.e., acts as a marginal filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1995-1997 three oceanographic cruises to the White Sea were undertaken in the framework of the INTAS project 94-391, and a multi-disciplinary geochemical study of the major North Dvina estuary has been carried out. Distribution of temperature, salinity and concentration of suspended matter in water columm, as well as contents of Al, Fe, Mn, Co, Cu, Ni, Cr, Pb, Zn, and organic carbon contents in suspended matter and sediments of the North Dvina estuary were determined. Most of the metals and organic matter studied appear to be of terrestrial origin, since the main source of investigated elements in the estuary is river run-off. It was found that metals incorporated in minerals are absolutely prevailing forms in estuarine sediments, they comprise up to 60-99% of total metal contents. Two zones of metal accumulation in the sediments were found in the North Dvina estuary. These zones are considered as local geochemical barriers within a major river-sea barrier. Distribution of most elements studied in the sediments of the North Dvina estuary is controlled by grain size variability in the sediments. Analysis of data on heavy metal contents in the sediments and bivalves of the North Dvina estuary did not reveal any anthropogenic heavy metal pollution in the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A conceptual scheme for the transition from winter to spring is developed for a small Arctic estuary (Churchill River, Hudson Bay) using hydrological, meteorological and oceanographic data together with models of the landfast ice. Observations within the Churchill River estuary and away from the direct influence of the river plume (Button Bay), between March and May 2005, show that both sea ice (production and melt) and river water influence the region's freshwater budget. In Button Bay, ice production in the flaw lead or polynya of NW Hudson Bay result in salinization through winter until the end of March, followed by a gradual freshening of the water column through April-May. In the Churchill Estuary, conditions varied abruptly throughout winter-spring depending on the physical interaction among river discharge, the seasonal landfast ice, and the rubble zone along the seaward margin of the landfast ice. Until late May, the rubble zone partially impounded river discharge, influencing the surface salinity, stratification, flushing time, and distribution and abundance of nutrients in the estuary. The river discharge, in turn, advanced and enhanced sea ice ablation in the estuary by delivering sensible heat. Weak stratification, the supply of riverine nitrogen and silicate, and a relatively long flushing time (~6 days) in the period preceding melt may have briefly favoured phytoplankton production in the estuary when conditions were still poor in the surrounding coastal environment. However, in late May, the peak flow and breakdown of the ice-rubble zone around the estuary brought abrupt changes, including increased stratification and turbidity, reduced marine and freshwater nutrient supply, a shorter flushing time, and the release of the freshwater pool into the interior ocean. These conditions suppressed phytoplankton productivity while enhancing the inventory of particulate organic matter delivered by the river. The physical and biological changes observed in this study highlight the variability and instability of small frozen estuaries during winter-spring transition, which implies sensitivity to climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methane (CH4) is a strong greenhouse gas known to have perturbed global climate in the past, especially when released in large quantities over short time periods from continental or marine sources. It is therefore crucial to understand and, if possible, quantify the individual and combined response of these variable methane sources to natural climate variability. However, past changes in the stability of greenhouse gas reservoirs remain uncertain and poorly constrained by geological evidence. Here, we present a record from the Congo fan of a highly specific bacteriohopanepolyol (BHP) biomarker for aerobic methane oxidation (AMO), 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol), that identifies discrete periods of increased AMO as far back as 1.2 Ma. Fluctuations in the concentration of aminopentol, and other 35-aminoBHPs, follow a pattern that correlates with late Quaternary glacial-interglacial climate cycles, with highest concentrations during warm periods. We discuss possible sources of aminopentol, and the methane consumed by the precursor methanotrophs, within the context of the Congo River setting, including supply of methane oxidation markers from terrestrial watersheds and/or marine sources (gas hydrate and/or deep subsurface gas reservoir). Compound-specific carbon isotope values of -30 per mil to -40 per mil for BHPs in ODP 1075 and strong similarities between the BHP signature of the core and surface sediments from the Congo estuary and floodplain wetlands from the interior of the Congo River Basin, support a methanotrophic and likely terrigenous origin of the 35-aminoBHPs found in the fan sediments. This new evidence supports a causal connection between marine sediment BHP records of tropical deep sea fans and wetland settings in the feeding river catchments, and thus tropical continental hydrology. Further research is needed to better constrain the different sources and pathways of methane emission. However, this study identifies the large potential of aminoBHPs, in particular aminopentol, to trace and, once better calibrated and understood, quantify past methane sources and fluxes from terrestrial and potentially also marine sources.