940 resultados para Sandwich beams


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interface formed between the metal and the porcelain of laser-welded Ni-Cr-Mo alloy was studied on a metallurgical basis. The characterization was carried out by using optical microscope, electron scan microscopy and X-ray dispersive spectroscopy techniques and mechanical three-point flexion tests, in the laser-welded region, with and without porcelain. The union of the porcelain with the alloy is possible only after the oxidation of the metallic surface and the subsequent application of a bonding agent known as opaque. The porcelain applied to the base metal and weld bead showed different behaviours - after the flexion test, the base metal showed cracks, while that in the weld bead broke away completely. It was noted that the region subjected to laser welding had lower adherence to the porcelain than the base metal region, due to microstructural refinement of the weld bead. These results can be shown by the X-ray dispersive spectroscopy carried out on the regions studied. The flexion tests demonstrated that the Ni-Cr-Mo alloy subject to laser welding had significant alterations in its mechanical properties after application of the porcelain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By direct numerical simulation of the time-dependent Gross-Pitaevskii equation, we study different aspects of the localization of a noninteracting ideal Bose-Einstein condensate (BEC) in a one-dimensional bichromatic quasiperiodic optical-lattice potential. Such a quasiperiodic potential, used in a recent experiment on the localization of a BEC, can be formed by the superposition of two standing-wave polarized laser beams with different wavelengths. We investigate the effect of the variation of optical amplitudes and wavelengths on the localization of a noninteracting BEC. We also simulate the nonlinear dynamics when a harmonically trapped BEC is suddenly released into a quasiperiodic potential, as done experimentally in a laser speckle potential. We finally study the destruction of the localization in an interacting BEC due to the repulsion generated by a positive scattering length between the bosonic atoms. © 2009 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proton beams in medical applications deal with relatively thick targets like the human head or trunk. Therefore, relatively small differences in the total proton stopping power given, for example, by the different models provided by GEANT4 can lead to significant disagreements in the final proton energy spectra when integrated along lengthy proton trajectories. This work presents proton energy spectra obtained by GEANT4.8.2 simulations using ICRU49, Ziegler1985 and Ziegler2000 models for 19.68MeV protons passing through a number of Al absorbers with various thicknesses. The spectra were compared with the experimental data, with TRIM/SRIM2008 and MCNPX2.4.0 simulations, and with the Payne analytical solution for the transport equation in the Fokker-Plank approximation. It is shown that the MCNPX simulations reasonably reproduce well all experimental spectra. For the relatively thin targets all the methods give practically identical results but this is not the same for the thick absorbers. It should be noted that all the spectra were measured at the proton energies significantly above 2MeV, i.e., in the so-called Bethe-Bloch region. Therefore the observed disagreements in GEANT4 results, simulated with different models, are somewhat unexpected. Further studies are necessary for better understanding and definitive conclusions. © 2009 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies on the distribution of plantar pressure between the sole of the foot and the ground were developed before the 19th century. Currently, the most often employed plantar pressure measurement systems are Pedar® and FScan®, which have restrictions such as operational difficulty and high cost. In the present study, a device was constructed from two pressure plates capable of measuring plantar forces in discreet areas of the feet at a low cost, using strain-gages attached to sixteen strategic points of the mechanical elements. Sixteen prismatic beams were soldered to each frame, for which the free extremity of each beam represented a specific point of the foot. Two strain gauges were attached to each beam - one near the upper fixed extremity and the other near the lower fixed extremity. Using a Wheatstone bridge electric circuit, the gauges were used to measure the force acting on the extremity of the beam. Precision and accuracy of the prototype was about 10%. In some measurements, accuracy was 2%. The low precision and accuracy were mainly due to the restrictions of the available equipment, which only permitted four measurements at a time. Thus, it was necessary for participants to stand on the plates four separate times, which signified possible changes in the position of the feet on the pressure plates. Despite some limitations, the aim was achieved. The prototype has been used in some studies and represents a contribution to biomechanics, demonstrating the viability of using strain gauges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pCT deals with relatively thick targets like the human head or trunk. Thus, the fidelity of pCT as a tool for proton therapy planning depends on the accuracy of physical formulas used for proton interaction with thick absorbers. Although the actual overall accuracy of the proton stopping power in the Bethe-Bloch domain is about 1%, the analytical calculations and the Monte Carlo simulations with codes like TRIM/SRIM, MCNPX and GEANT4 do not agreed with each other. A tentative to validate the codes against experimental data for thick absorbers bring some difficulties: only a few data is available and the existing data sets have been acquired at different initial proton energies, and for different absorber materials. In this work we compare the results of our Monte Carlo simulations with existing experimental data in terms of reduced calibration curve, i.e. the range - energy dependence normalized on the range scale by the full projected CSDA range for given initial proton energy in a given material, taken from the NIST PSTAR database, and on the final proton energy scale - by the given initial energy of protons. This approach is almost energy and material independent. The results of our analysis are important for pCT development because the contradictions observed at arbitrary low initial proton energies could be easily scaled now to typical pCT energies. © 2010 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CMS Collaboration conducted a month-long data-taking exercise known as the Cosmic Run At Four Tesla in late 2008 in order to complete the commissioning of the experiment for extended operation. The operational lessons resulting from this exercise were addressed in the subsequent shutdown to better prepare CMS for LHC beams in 2009. The cosmic data collected have been invaluable to study the performance of the detectors, to commission the alignment and calibration techniques, and to make several cosmic ray measurements. The experimental setup, conditions, and principal achievements from this data-taking exercise are described along with a review of the preceding integration activities. © 2010 IOP Publishing Ltd and SISSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams. © 2010 IOP Publishing Ltd and SISSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The resolution and the linearity of time measurements made with the CMS electromagnetic calorimeter are studied with samples of data from test beam electrons, cosmic rays, and beam-produced muons. The resulting time resolution measured by lead tungstate crystals is better than 100 ps for energy deposits larger than 10 GeV. Crystal-to-crystal synchronization with a precision of 500 ps is performed using muons produced with the first LHC beams in 2008. © 2010 IOP Publishing Ltd and SISSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant efforts are devoted to developing new ferroelectrets with well-controlled void distributions or uniform voids and with good long-term and thermal stability of the piezoelectricity. Here, we describe the concept, the fabrication, and the most relevant properties of fluoropolymer ferroelectret systems with three separate films of fluoroethylenepropylene (FEP), alternating with two polytetrafluoroethylene (PTFE) templates. The FEP films are selectively fused by means of a lamination process. Two practically identical PTFE templates are used, which have parallel rectangular openings (1.5×30 mm 2) separated by PTFE ridges of 1.5 mm width. After removing the PTFE templates, a three-layer FEP-film sandwich with tubular channels is obtained. We demonstrate that such FEP-film systems exhibit significant and stable piezoelectricity after charging under a high DC voltage. The resulting piezoelectric effect may be further improved by carefully assembling and arranging the PTFE templates during preparation. ©2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The GEANT4 simulations are essential for the development of medical tomography with proton beams pCT. In the case of thin absorbers the latest releases of GEANT4 generate very similar final spectra which agree well with the results of other popular Monte Carlo codes like TRIM/SRIM, or MCNPX. For thick absorbers, however, the disagreements became evident. In a part, these disagreements are due to the known contradictions in the NIST PSTAR and SRIM reference data. Therefore, it is interesting to compare the GEANT4 results with each other, with experiment, and with diverse code results in a reduced form, which is free from this kind of doubts. In this work such comparison is done within the Reduced Calibration Curve concept elaborated for the proton beam tomography. © 2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary In this work the structural dependence of plastic rotation capacity in RC beams is evaluated using the Finite Element Method. The objective is to achieve a better understanding of the non-linear behavior of reinforced concrete members and perform extensive parameter studies, using a rational model developed by Bigaj [1] to analyze the phenomenon of plastic rotation capacity in reinforced concrete members. It is assumed that only bending failure is relevant due to sufficient member resistance against shear and torsion. The paper begins with the physical and theoretical background of the phenomenon of plastic hinge development in RC structures. Special emphasis is laid on the issue of structural dependence of deformation capacity of plastic hinges in RC members. Member size dependence and influence of properties of construction materials were emphasized as well. The essential components of the Bigajs model for calculating the plastic rotation capacity are discussed. The behaviour of the plastic hinge is analysed taking into account the strain localisation in the damage zones of the hinge region. The Fictitious Crack Model (FCM) and the Compressive Damage Zone Model (CDZ) are adopted in a Fracture Mechanics approach to model the behaviour of concrete in tension and compression, respectively. The approach is implemented in FEMOOP, a FEM in-house solver under development, and applied to evaluate ductility in 2D beams. The models were generated with GiD, a pre-processor and post-processor developed by CIMNE, and analyzed with the capabilities implemented in FEMOOP. © Universitat Politècnica de Catalunya, Barcelona, España 2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proton beams in medical applications deal with relatively thick targets like the human head or trunk. Thus, the fidelity of proton computed tomography (pCT) simulations as a tool for proton therapy planning depends in the general case on the accuracy of results obtained for the proton interaction with thick absorbers. GEANT4 simulations of proton energy spectra after passing thick absorbers do not agree well with existing experimental data, as showed previously. Moreover, the spectra simulated for the Bethe-Bloch domain showed an unexpected sensitivity to the choice of low-energy electromagnetic models during the code execution. These observations were done with the GEANT4 version 8.2 during our simulations for pCT. This work describes in more details the simulations of the proton passage through aluminum absorbers with varied thickness. The simulations were done by modifying only the geometry in the Hadrontherapy Example, and for all available choices of the Electromagnetic Physics Models. As the most probable reasons for these effects is some specific feature in the code, or some specific implicit parameters in the GEANT4 manual, we continued our study with version 9.2 of the code. Some improvements in comparison with our previous results were obtained. The simulations were performed considering further applications for pCT development. © 2011 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In last decades, control of nonlinear dynamic systems became an important and interesting problem studied by many authors, what results the appearance of lots of works about this subject in the scientific literature. In this paper, an Atomic Force Microscope micro cantilever operating in tapping mode was modeled, and its behavior was studied using bifurcation diagrams, phase portraits, time history, Poincare maps and Lyapunov exponents. Chaos was detected in an interval of time; those phenomena undermine the achievement of accurate images by the sample surface. In the mathematical model, periodic and chaotic motion was obtained by changing parameters. To control the chaotic behavior of the system were implemented two control techniques. The SDRE control (State Dependent Riccati Equation) and Time-delayed feedback control. Simulation results show the feasibility of the bothmethods, for chaos control of an AFM system. Copyright © 2011 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The texture of concrete blocks is very important and is often the decisive factor when choosing a product, particularly if the building specifications does not dispense with the high resistance of the blocks, but has the purpose of reducing costs with finishing, therefore preferring exposed blocks with a closer texture. Furthermore, a closer texture, especially for exteriors,may be the vital factor of the building's pathology.However, there is so far no standard to quantify the texture of a structural block. This article proposes to apply the freely available UTHSCSA-Image ToolTM program developed by the University of Texas Health Science Center at San Antonio to evaluate the texture of masonry blocks. One aspect that should never be overlooked when studying masonry blocks is compressive strength. Therefore, this work also gets the compressive strength of the blocks with and without the addition of lime. The addition of small quantities of lime proved beneficial for both texture and compressive strength. However, increasing the amount of lime proved to be feasible only to improve texture. © 2012 Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present a new approach for thermal lens analysis using a two-wavelength DSPI (Digital Speckle Pattern Interferometry) setup for wavefront sensing. The employed geometry enables the sensor to detect wavefronts with small phase differences and inherent aberrations found in induced lenses. The wavefronts was reconstructed by four-stepping fringe evaluation and branch-cut unwrapping from fringes formed onto a diffusive glass. Real-time single-exposure contour interferograms could be obtained in order to get discernible and low-spacial frequency contour fringes and obtain low-noise measurements. In our experiments we studied the thermal lens effect in a 4% Er-doped CaO-Al2O3 glass sample. The diode lasers were tuned to have a contour interval of around 120 μm. The incident pump power was longitudinally and collinearly oriented with the probe beams. Each interferogram described a spherical-like wavefront. Using the ABCD matrix formalism we obtained the induced lens dioptric power from the thermal effect for different values of absorbed pump power. © 2012 Copyright SPIE.