964 resultados para SUBSURFACE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we use IP and alkenone biomarker proxies to document the subdecadal variations of sea ice and sea surface temperature in the subpolar North Atlantic induced by the decadally paced explosive tropical volcanic eruptions of the second half of the thirteenth century. The short- and long-term evolutions of both variables were investigated by cross analysis with a simulation of the IPSL-CM5A LR model. Our results show short-term ocean cooling and sea ice expansion in response to each volcanic eruption. They also highlight that the long response time of the ocean leads to cumulative surface cooling and subsurface heat buildup due to sea ice capping. As volcanic forcing relaxes, the surface ocean rapidly warms, likely amplified by subsurface heat, and remains almost ice free for several decades

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assessing temporal variations in soil water flow is important, especially at the hillslope scale, to identify mechanisms of runoff and flood generation and pathways for nutrients and pollutants in soils. While surface processes are well considered and parameterized, the assessment of subsurface processes at the hillslope scale is still challenging since measurement of hydrological pathways is connected to high efforts in time, money and personnel work. The latter might not even be possible in alpine environments with harsh winter processes. Soil water stable isotope profiles may offer a time-integrating fingerprint of subsurface water pathways. In this study, we investigated the suitability of soil water stable isotope (d18O) depth profiles to identify water flow paths along two transects of steep subalpine hillslopes in the Swiss Alps. We applied a one-dimensional advection–dispersion model using d18O values of precipitation (ranging from _24.7 to _2.9‰) as input data to simulate the d18O profiles of soil water. The variability of d18O values with depth within each soil profile and a comparison of the simulated and measured d18O profiles were used to infer information about subsurface hydrological pathways. The temporal pattern of d18O in precipitation was found in several profiles, ranging from _14.5 to _4.0‰. This suggests that vertical percolation plays an important role even at slope angles of up to 46_. Lateral subsurface flow and/or mixing of soil water at lower slope angles might occur in deeper soil layers and at sites near a small stream. The difference between several observed and simulated d18O profiles revealed spatially highly variable infiltration patterns during the snowmelt periods: The d18O value of snow (_17.7 ± 1.9‰) was absent in several measured d18O profiles but present in the respective simulated d18O profiles. This indicated overland flow and/or preferential flow through the soil profile during the melt period. The applied methods proved to be a fast and promising tool to obtain time-integrated information on soil water flow paths at the hillslope scale in steep subalpine slopes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used electrochemical scanning tunneling microscopy to study the intercalation of hydrogen into a Cu(111) model electrode under reactive (in operando) conditions. Hydrogen evolution causes hydrogen intermediates to migrate into the copper lattice as function of the applied potential and the resulting current density. This H-inclusion is demonstrated to be reversible. The presence of subsurface hydrogen leads to a significant surface relaxation/reconstruction affecting both the geometric and electronic structure of the electrode surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apollinaris Mons is an isolated volcano on Mars straddling the boundary between the southern highlands and the northern plains. One of its most distinctive features is its massive fan-shaped deposit that extends from a breach on its summit to distances of more than 150 km and drapes its entire southern flank. The composition and formation mechanism of these deposits remains controversial. We investigate the radar properties of the fan deposits (FD) of Apollinaris Mons using low-frequency sounding radar data in combination with high-resolution images and crater-size frequency analysis to constrain their inner shape and bulk composition. Our analysis indicates that the FD attains an irregular thickness and is gradually thinner towards their lateral margins. The crater-size frequency analysis shows that they may have undergone repeated resurfacing, which is suggestive of long-term evolution. Our analysis of Shallow Radar (SHARAD) radargrams traversing different sections of the FD reveals multiple and different subsurface interfaces among the radargrams crossing the thinnest part, which suggests a layered and complex inner shape. Our estimates for the bulk real part of the dielectric constant of the FD ranges from 3 to 5, which is consistent with an icy-silicate mixture or pyroclastic composition. Therefore, we conclude that lahars or pyroclastic flows are the most likely mechanism that created the FD, yet we cannot rule out additional contributions from lava flows. A combination of multiple processes is also possible since the deposits appear to have been modified by fluvial processes at a later stage of their formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effectiveness of fluoride in caries prevention has been convincingly proven. In recent years, researchers have investigated the preventive effects of different fluoride formulations on erosive tooth wear with positive results, but their action on caries and erosion prevention must be based on different requirements, because there is no sheltered area in the erosive process as there is in the subsurface carious lesions. Thus, any protective mechanism from fluoride concerning erosion is limited to the surface or the near surface layer of enamel. However, reports on other protective agents show superior preventive results. The mechanism of action of tin-containing products is related to tin deposition onto the tooth surface, as well as the incorporation of tin into the near-surface layer of enamel. These tin-rich deposits are less susceptible to dissolution and may result in enhanced protection of the underlying tooth. Titanium tetrafluoride forms a protective layer on the tooth surface. It is believed that this layer is made up of hydrated hydrogen titanium phosphate. Products containing phosphates and/or proteins may adsorb either to the pellicle, rendering it more protective against demineralization, or directly to the dental hard tissue, probably competing with H(+) at specific sites on the tooth surface. Other substances may further enhance precipitation of calcium phosphates on the enamel surface, protecting it from additional acid impacts. Hence, the future of fluoride alone in erosion prevention looks grim, but the combination of fluoride with protective agents, such as polyvalent metal ions and some polymers, has much brighter prospects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subseafloor environments preserved in Archean greenstone belts provide an analogue for investigating potential subsurface habitats on Mars. The c. 3.5-3.4 Ga pillow lava metabasalts of the mid-Archean Barberton greenstone belt, South Africa, have been argued to contain the earliest evidence for microbial subseafloor life. This includes candidate trace fossils in the form of titanite microtextures, and sulfur isotopic signatures of pyrite preserved in metabasaltic glass of the c. 3.472 Ga Hooggenoeg Formation. It has been contended that similar microtextures in altered martian basalts may represent potential extraterrestrial biosignatures of microbe-fluid-rock interaction. But despite numerous studies describing these putative early traces of life, a detailed metamorphic characterization of the microtextures and their host alteration conditions in the ancient pillow lava metabasites is lacking. Here, we present a new nondestructive technique with which to study the in situ metamorphic alteration conditions associated with potential biosignatures in mafic-ultramafic rocks of the Hooggenoeg Formation. Our approach combines quantitative microscale compositional mapping by electron microprobe with inverse thermodynamic modeling to derive low-temperature chlorite crystallization conditions. We found that the titanite microtextures formed under subgreenschist to greenschist facies conditions. Two chlorite temperature groups were identified in the maps surrounding the titanite microtextures and record peak metamorphic conditions at 315 ± 40°C (XFe3+(chlorite) = 25-34%) and lower-temperature chlorite veins/microdomains at T = 210 ± 40°C (lower XFe3+(chlorite) = 40-45%). These results provide the first metamorphic constraints in textural context on the Barberton titanite microtextures and thereby improve our understanding of the local preservation conditions of these potential biosignatures. We suggest that this approach may prove to be an important tool in future studies to assess the biogenicity of these earliest candidate traces of life on Earth. Furthermore, we propose that this mapping approach could also be used to investigate altered mafic-ultramafic extraterrestrial samples containing candidate biosignatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A time-lapse pressure tomography inversion approach is applied to characterize the CO2 plume development in a virtual deep saline aquifer. Deep CO2 injection leads to flow properties of the mixed-phase, which vary depending on the CO2 saturation. Analogous to the crossed ray paths of a seismic tomographic experiment, pressure tomography creates streamline patterns by injecting brine prior to CO2 injection or by injecting small amounts of CO2 into the two-phase (brine and CO2) system at different depths. In a first step, the introduced pressure responses at observation locations are utilized for a computationally rapid and efficient eikonal equation based inversion to reconstruct the heterogeneity of the subsurface with diffusivity (D) tomograms. Information about the plume shape can be derived by comparing D-tomograms of the aquifer at different times. In a second step, the aquifer is subdivided into two zones of constant values of hydraulic conductivity (K) and specific storage (Ss) through a clustering approach. For the CO2 plume, mixed-phase K and Ss values are estimated by minimizing the difference between calculated and “true” pressure responses using a single-phase flow simulator to reduce the computing complexity. Finally, the estimated flow property is converted to gas saturation by a single-phase proxy, which represents an integrated value of the plume. This novel approach is tested first with a doublet well configuration, and it reveals a great potential of pressure tomography based concepts for characterizing and monitoring deep aquifers, as well as the evolution of a CO2 plume. Still, field-testing will be required for better assessing the applicability of this approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physical processes controlling the mixed layer salinity (MLS) seasonal budget in the tropical Atlantic Ocean are investigated using a regional configuration of an ocean general circulation model. The analysis reveals that the MLS cycle is generally weak in comparison of individual physical processes entering in the budget because of strong compensation. In evaporative regions, around the surface salinity maxima, the ocean acts to freshen the mixed layer against the action of evaporation. Poleward of the southern SSS maxima, the freshening is ensured by geostrophic advection, the vertical salinity diffusion and, during winter, a dominant contribution of the convective entrainment. On the equatorward flanks of the SSS maxima, Ekman transport mainly contributes to supply freshwater from ITCZ regions while vertical salinity diffusion adds on the effect of evaporation. All these terms are phase locked through the effect of the wind. Under the seasonal march of the ITCZ and in coastal areas affected by river (7°S:15°N), the upper ocean freshening by precipitations and/or runoff is attenuated by vertical salinity diffusion. In the eastern equatorial regions, seasonal cycle of wind forced surface currents advect freshwaters, which are mixed with subsurface saline water because of the strong vertical turbulent diffusion. In all these regions, the vertical diffusion presents an important contribution to the MLS budget by providing, in general, an upwelling flux of salinity. It is generally due to vertical salinity gradient and mixing due to winds. Furthermore, in the equator where the vertical shear, associated to surface horizontal currents, is developed, the diffusion depends also on the sheared flow stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The asteroid 4 Vesta was recently found to have two large impact craters near its south pole, exposing subsurface material. Modelling suggested that surface material in the northern hemisphere of Vesta came from a depth of about 20 kilometres, whereas the exposed southern material comes from a depth of 60 to 100 kilometres. Large amounts of olivine from the mantle were not seen, suggesting that the outer 100 kilometres or so is mainly igneous crust. Here we analyse the data on Vesta and conclude that the crust–mantle boundary (or Moho) is deeper than 80 kilometres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geological site characterisation programmes typically rely on drill cores for direct information on subsurface rocks. However, porosity, transport properties and porewater composition measured on drill cores can deviate from in-situ values due to two main artefacts caused by drilling and sample recovery: (1) mechanical disruption that increases porosity and (2) contamination of the porewater by drilling fluid. We investigated the effect and magnitude of these perturbations on large drill core samples (12–20 cm long, 5 cmdiameter) of high-grade, granitic gneisses obtained from 350 to 600 m depth in a borehole on Olkiluoto Island (SW Finland). The drilling fluid was traced with sodium–iodide. By combining out-diffusion experiments, gravimetry, UV-microscopy and iodide mass balance calculations, we successfully quantified the magnitudes of the artefacts: 2–6% increase in porosity relative to the bulk connected porosity and 0.9 to 8.9 vol.% contamination by drilling fluid. The spatial distribution of the drilling-induced perturbations was revealed by numerical simulations of 2D diffusion matched to the experimental data. This showed that the rims of the samples have a mechanically disrupted zone 0.04 to 0.22 cm wide, characterised by faster transport properties compared to the undisturbed centre (1.8 to 7.7 times higher pore diffusion coefficient). Chemical contamination was shown to affect an even wider zone in all samples, ranging from 0.15 to 0.60 cm, inwhich iodide enrichmentwas up to 180 mg/kgwater, compared to 0.5 mg/kgwater in the uncontaminated centre. For all samples in the present case study, it turned out that the magnitude of the artefacts caused by drilling and sample recovery is so small that no correction is required for their effects. Therefore, the standard laboratory measurements of porosity, transport properties and porewater composition can be taken as valid in-situ estimates. However, it is clear that the magnitudes strongly depend on site- and drilling-specific factors and therefore our results cannot be transferred simply to other locations. We recommend the approach presented in this study as a route to obtain reliable values in future drilling campaigns aimed at characterising in-situ bedrock properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the preferential timescales of variability in the North Atlantic, usually associated with the Atlantic meridional overturning circulation (AMOC), is essential for the prospects for decadal prediction. However, the wide variety of mechanisms proposed from the analysis of climate simulations, potentially dependent on the models themselves, has stimulated the debate of which processes take place in reality. One mechanism receiving increasing attention, identified both in idealized models and observations, is a westward propagation of subsurface buoyancy anomalies that impact the AMOC through a basin-scale intensification of the zonal density gradient, enhancing the northward transport via thermal wind balance. In this study, we revisit a control simulation from the Institut Pierre-Simon Laplace Coupled Model 5A (IPSL-CM5A), characterized by a strong AMOC periodicity at 20 years, previously explained by an upper ocean–atmosphere–sea ice coupled mode driving convection activity south of Iceland. Our study shows that this mechanism interacts constructively with the basin-wide propagation in the subsurface. This constructive feedback may explain why bi-decadal variability is so intense in this coupled model as compared to others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to compare different bacterial models for in vitro induction of non-cavitated enamel caries-like lesions by microhardness and polarized light microscopy analyses. One hundred blocks of bovine enamel were randomly divided into four groups (n = 25) according to the bacterial model for caries induction: (A) Streptococcus mutans, (B) S. mutans and Lactobacillus acidophilus, (C) S. mutans and L. casei, and (D) S. mutans, L. acidophilus, and L. casei. Within each group, the blocks were randomly divided into five subgroups according to the duration of the period of caries induction (4-20 days). The enamel blocks were immersed in cariogenic solution containing the microorganisms, which was changed every 48 h. Groups C and D presented lower surface hardness values (SMH) and higher area of hardness loss (ΔS) after the cariogenic challenge than groups A and B (P < 0.05). As regards lesion depth, under polarized light microscopy, group A presented significantly lower values, and groups C and D the highest values. Group B showed a higher value than group A (P < 0.05). Groups A and B exhibited subsurface caries lesions after all treatment durations, while groups C and D presented erosion-type lesions with surface softening. The model using S. mutans, whether or not it was associated with L. acidophilus, was less aggressive and may be used for the induction of non-cavitated enamel caries-like lesions. The optimal period for inducing caries-like lesions was 8 days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the thermal evolution of comet 67P/Churyumov-Gerasimenko's subsurface in the Seth_01 region, where active pits have been observed by the ESA/Rosetta mission. Our simulations show that clathrate destabilization and amorphous ice crystallization can occur at depths corresponding to those of the observed pits in a timescale shorter than 67P/Churyumov-Gerasimenko's lifetime in the comet's activity zone in the inner solar system. Sublimation of crystalline ice down to such depths is possible only in the absence of a dust mantle, which requires the presence of dust grains in the matrix small enough to be dragged out by gas from the pores. Our results are consistent with both pits formation via sinkholes or subsequent to outbursts, the dominant process depending on the status of the subsurface porosity. A sealed dust mantle would favor episodic and disruptive outgassing as a result of increasing gas pressure in the pores, while high porosity should allow the formation of large voids in the subsurface due to the continuous escape of volatiles. We finally conclude that the subsurface of 67P/Churyumov-Gerasimenko is not uniform at a spatial scale of similar to 100-200 m.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Images from the OSIRIS scientific imaging system onboard Rosetta show that the nucleus of 67P/Churyumov-Gerasimenko consists of two lobes connected by a short neck. The nucleus has a bulk density less than half that of water. Activity at a distance from the Sun of >3 astronomical units is predominantly from the neck, where jets have been seen consistently. The nucleus rotates about the principal axis of momentum. The surface morphology suggests that the removal of larger volumes of material, possibly via explosive release of subsurface pressure or via creation of overhangs by sublimation, may be a major mass loss process. The shape raises the question of whether the two lobes represent a contact binary formed 4.5 billion years ago, or a single body where a gap has evolved via mass loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Images of comet 67P/Churyumov-Gerasimenko acquired by the OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System) imaging system onboard the European Space Agency's Rosetta spacecraft at scales of better than 0.8 meter per pixel show a wide variety of different structures and textures. The data show the importance of airfall, surface dust transport, mass wasting, and insolation weathering for cometary surface evolution, and they offer some support for subsurface fluidization models and mass loss through the ejection of large chunks of material.