948 resultados para STABILIZED CDTE NANOCRYSTALS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chameleons are scalar fields that couple directly to ordinary matter with gravitational strength, but which nevertheless evade the stringent constraints on tests of gravity because of properties they acquire in the presence of high ambient matter density. Chameleon theories were originally constructed in a bottom-up, phenomenological fashion, with potentials and matter couplings designed to hide the scalar from experiments. In this paper, we attempt to embed the chameleon scenario within string compactifications, thus UV completing the scenario. We look for stabilized potentials that can realize a screening mechanism, and we find that the volume modulus rather generically works as a chameleon, and in fact the supersymmetric potential used by Kachru, Kallosh, Linde and Trivedi (KKLT) is an example of this type. We consider all constraints from tests of gravity, allowing us to put experimental constraints on the KKLT parameters.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Silica sonogels with different porosities were prepared by acid sono-hydrolysis of tetraethoxysilane. Wet sonogels were studied using small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC). The DSC shows a broad thermal peak below the normal water melting point associated with the melting of confined ice nanocrystals, or nanoporosity. The nanopore size distribution was determined from the Gibbs-Thomson equation. As the porosity is increased, a second sharp DSC thermal peak with onset temperature at the water melting point is apparent, which was associated with the melting of ice macrocrystals, or macroporosity. The DSC result could be causing misinterpretation of the macroporosity because water may not be exactly confined in very feeble silica network regions in sonogels with high porosity. The structure of the wet gels can be described fairly well as mutually self-similar mass fractal structures with characteristic length. increasing from similar to 1.8 to similar to 5.4 nm and mass fractal dimension D diminishing discretely from similar to 2.6 to similar to 2.3 as the porosity increases in the range studied. More specifically, such a structure could be described using a two-parameter correlation function gamma(r) similar to r(D-3) exp(-r/xi), which is limited at larger scale by the cut-off distance xi but without a well-defined small scale cut-off distance, at least up to the maximum angular domain probed using SAXS in the present study.
Resumo:
In this paper we use the singularity method of Koschorke [2] to study the question of how many different nonstable homotopy classes of monomorphisms of vector bundles lie in a stable class and the percentage of stable monomorphisms which are not homotopic to stabilized nonstable monomorphisms. Particular attention is paid to tangent vector fields. This work complements some results of Koschorke [3; 4], Libardi-Rossini [7] and Libardi-do Nascimento-Rossini [6].
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Radioluminescence (RL) emissions were obtained for the BaZrO3 self-assembled nanocrystals under decaoctahedral shape, if produced via microwave-assisted hydrothermal method. Trapped F centers created within the band gap are the result of order-disorder effects, which act as key factors supporting significant RL emission through a detrapping process. The influences of size and morphology on RL properties are take into account. No radiation damage or loss of emission intensity was observed. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The presumably soluble KFe(+3)[Fe(2+)(CN)(6)] structure of electrochemically synthesized hexacyanoferrate materials (Prussian Blue) containing K(+) ions was determined for the first time in this study. Prior to drawing conclusions from a structural analysis, the main goal was to make a precise analysis of the inferred soluble structure, that is, KFe(+3) [Fe(2+)(CN)(6)], which is frequently referred to in the literature as the final stable electrochemically synthesized structure. Indeed, a successful X-ray powder diffraction experiment using X-ray synchrotron radiation was made of a powder placed in a 0.5 mm diameter borosilicate glass capillary, which was obtained by removing sixty 90 nm thin films from the substrates on which they were prepared. However, the conclusions were highly unexpected, because the structure showed that the [Fe(CN)61 group was absent from similar to 25% of the structure, invalidating the previously presumed soluble KFe(+3)[Fe(2+)(CN)(6)] structure. This information led to the conclusion that the real structure of Prussian Blue electrochemically synthesized after the stabilization process is Fe(4)[Fe(CN)(6)](3)center dot mH(2)O containing a certain fraction of inserted K(+) ions. In fact, based on an electrogravimetric analysis (Gimenez-Romero et al., J. Phys. Chem. B 2006, 110, 2715 and 19352) complemented by the Fourier maps. it is possible to affirm that the K(+) was part of the water crystalline substructure. Therefore, the interplay mechanism was reexamined considering more precisely the role played by the water crystalline substructure and the K+ alkali metal ion. As a final conclusion, it is proposed that the most precise way to represent the structure of electrochemically synthesized and stabilized hexacyanoferrate materials is Fe(4)(3+) Fe(2+)(CN)(6)](3)center dot[K(h)(+)center dot OH(h)(-)center dot mH(2)O]. The importance of this result is that the widespread use of the terms soluble and insoluble in the electrochemical literature could be reconsidered. Indeed, only one type of structure is insoluble, and that is Fe(4)[Fe(CN)(6)](3)center dot mH(2)O hence, the use of the terms soluble and insoluble is inappropriate from a structural point of view. The result of the presence of the [Fe(CN)61 vacancy a, roup is that the water Substructure cannot be ignored in the ionic interplay mechanism which controls the intercalation and redox process, as was previously confirmed by electrogravimetric analyses (Gimenez-Romero et al., J. Phys. Chem. B 2006, 110, 2715 Garcia-Jareno et al., Electrochim. Acta 1998, 44, 395: Kulesza, Inorg. Chem. 1990, 29, 2395).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Transparent glass ceramics have been prepared in the Ga2S3-GeS2-CsCI pseudoternary system appropriate heat treatment time and temperature. In situ X-ray diffraction at the heat treatment temperature and Cs-133 and Ga-71 solid-state nuclear magnetic resonance have been performed in function of annealing time to understand the crystallization process. Both techniques have evidenced the nucleating agent role played by gallium with the formation of Ga2S3 nanocrystals. on the other hand, cesium is incorporated very much later into the crystallites during the ceramization. Moreover, the addition of CsCl, which is readily integrated into the glassy network, permits us to shift the optical band gap toward shorter wavelength. Thus, new glass ceramics transmitting in the whole visible range up to 11.5 mu m have been Successfully synthesized from the (Ga2S3)(35)-(GeS2)(25)-CsCl40 base glass composition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Compostos da família La1-xSr xCr0,5Mn0,5O3 são apontados como potenciais anodos cerâmicos de células a combustível de óxidos sólidos. A utilização de anodos cerâmicos tem como objetivo eliminar os problemas de depósito de carbono na superfície do níquel e a baixa resistência a ciclos de redução/oxidação observados no compósito cerâmica-metal à base de zircônia estabilizada e níquel, que é o material anódico mais usado nestas células. Neste estudo são apresentados os resultados da síntese pela técnica dos precursores poliméricos e da caracterização de compostos com x = 0,5, estequiométrico e com 5% de deficiência catiônica no sítio A da estrutura perovskita La1-xSr xCr0,5Mn0,5O3 e (La1-xSr x)0,95Cr0,5Mn0,5O3, respectivamente. Os resultados evidenciam que o composto estudado possui altos valores de condutividade elétrica e baixa reatividade com eletrólitos à base de zircônia.