1000 resultados para SRM technology
Resumo:
Up-converting phosphor technology (UPT)-based lateral-flow immunoassay has been developed for quantitative detection of Yersinia pestis rapidly and specifically. In this assay, 400 nm up-converting phosphor particles were used as the reporter. A sandwich immumoassay was employed by using a polyclonal antibody against F1 antigen of Y. pestis immobilized on the nitrocellulose membrane and the same antibody conjugated to the UPT particles. The signal detection of the strips was performed by the UPT-based biosensor that could provide a 980 nm IR laser to excite the phosphor particles, then collect the visible luminescence emitted by the UPT particles and finally convert it to the voltage as a signal. V-T and V-c stand for the multiplied voltage units for the test and the control line, respectively, and the ratio V-T/V-C is directly proportional to the number of Y pestis in a sample. We observed a good linearity between the ratio and log CFU/ml of Y pestis above the detection limit, which was approximately 10(4) CFU/mI. The precision of the intra- and inter-assay was below 15% (coefficient of variation, CV). Cross-reactivity with related Gram-negative enteric bacteria was not found. The UPT-LF immunoassay system presented here takes less than 30 min to perform from the sample treatment to the data analysis. The current paper includes only preliminary data concerning the biomedical aspects of the assay, but is more concentrated on the technical details of establishing a rapid manual assay using a state-of-the-art label chemistry. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The document reports on the major findings from a definition study to appraise the options to develop fish tracking equipment, in particular tags and data logging systems, in order to improve the effeciency of the Agency tracking studies and to obtain a greater understanding of fish biology. The definition study was in two parts. The first, Phase 1, collated and evaluated all the known tracking systems that may be suitable for studies of fish which are either produced commercially or have been constructed for specific in-house studies. Phase 2 was an evaluation of all the tracking equipment considered to merit further investigation in Phase 1. The deficiencies between existing and required technologies to improve the efficiency of Agency's tracking studies and to obtain a greater understanding of fish biology are also identified.