891 resultados para SPATIAL STRUCTURE
Resumo:
This dissertation is primarily an applied statistical modelling investigation, motivated by a case study comprising real data and real questions. Theoretical questions on modelling and computation of normalization constants arose from pursuit of these data analytic questions. The essence of the thesis can be described as follows. Consider binary data observed on a two-dimensional lattice. A common problem with such data is the ambiguity of zeroes recorded. These may represent zero response given some threshold (presence) or that the threshold has not been triggered (absence). Suppose that the researcher wishes to estimate the effects of covariates on the binary responses, whilst taking into account underlying spatial variation, which is itself of some interest. This situation arises in many contexts and the dingo, cypress and toad case studies described in the motivation chapter are examples of this. Two main approaches to modelling and inference are investigated in this thesis. The first is frequentist and based on generalized linear models, with spatial variation modelled by using a block structure or by smoothing the residuals spatially. The EM algorithm can be used to obtain point estimates, coupled with bootstrapping or asymptotic MLE estimates for standard errors. The second approach is Bayesian and based on a three- or four-tier hierarchical model, comprising a logistic regression with covariates for the data layer, a binary Markov Random field (MRF) for the underlying spatial process, and suitable priors for parameters in these main models. The three-parameter autologistic model is a particular MRF of interest. Markov chain Monte Carlo (MCMC) methods comprising hybrid Metropolis/Gibbs samplers is suitable for computation in this situation. Model performance can be gauged by MCMC diagnostics. Model choice can be assessed by incorporating another tier in the modelling hierarchy. This requires evaluation of a normalization constant, a notoriously difficult problem. Difficulty with estimating the normalization constant for the MRF can be overcome by using a path integral approach, although this is a highly computationally intensive method. Different methods of estimating ratios of normalization constants (N Cs) are investigated, including importance sampling Monte Carlo (ISMC), dependent Monte Carlo based on MCMC simulations (MCMC), and reverse logistic regression (RLR). I develop an idea present though not fully developed in the literature, and propose the Integrated mean canonical statistic (IMCS) method for estimating log NC ratios for binary MRFs. The IMCS method falls within the framework of the newly identified path sampling methods of Gelman & Meng (1998) and outperforms ISMC, MCMC and RLR. It also does not rely on simplifying assumptions, such as ignoring spatio-temporal dependence in the process. A thorough investigation is made of the application of IMCS to the three-parameter Autologistic model. This work introduces background computations required for the full implementation of the four-tier model in Chapter 7. Two different extensions of the three-tier model to a four-tier version are investigated. The first extension incorporates temporal dependence in the underlying spatio-temporal process. The second extensions allows the successes and failures in the data layer to depend on time. The MCMC computational method is extended to incorporate the extra layer. A major contribution of the thesis is the development of a fully Bayesian approach to inference for these hierarchical models for the first time. Note: The author of this thesis has agreed to make it open access but invites people downloading the thesis to send her an email via the 'Contact Author' function.
The structure and peptisation of alumina prepared from the hydrolysis of trisecbutoxyaluminium (III)
Resumo:
Patterns of connectivity among local populations influence the dynamics of regional systems, but most ecological models have concentrated on explaining the effect of connectivity on local population structure using dynamic processes covering short spatial and temporal scales. In this study, a model was developed in an extended spatial system to examine the hypothesis that long term connectivity levels among local populations are influenced by the spatial distribution of resources and other habitat factors. The habitat heterogeneity model was applied to local wild rabbit populations in the semi-arid Mitchell region of southern central Queensland (the Eastern system). Species' specific population parameters which were appropriate for the rabbit in this region were used. The model predicted a wide range of long term connectivity levels among sites, ranging from the extreme isolation of some sites to relatively high interaction probabilities for others. The validity of model assumptions was assessed by regressing model output against independent population genetic data, and explained over 80% of the variation in the highly structured genetic data set. Furthermore, the model was robust, explaining a significant proportion of the variation in the genetic data over a wide range of parameters. The performance of the habitat heterogeneity model was further assessed by simulating the widely reported recent range expansion of the wild rabbit into the Mitchell region from the adjacent, panmictic Western rabbit population system. The model explained well the independently determined genetic characteristics of the Eastern system at different hierarchic levels, from site specific differences (for example, fixation of a single allele in the population at one site), to differences between population systems (absence of an allele in the Eastern system which is present in all Western system sites). The model therefore explained the past and long term processes which have led to the formation and maintenance of the highly structured Eastern rabbit population system. Most animals exhibit sex biased dispersal which may influence long term connectivity levels among local populations, and thus the dynamics of regional systems. When appropriate sex specific dispersal characteristics were used, the habitat heterogeneity model predicted substantially different interaction patterns between female-only and combined male and female dispersal scenarios. In the latter case, model output was validated using data from a bi-parentally inherited genetic marker. Again, the model explained over 80% of the variation in the genetic data. The fact that such a large proportion of variability is explained in two genetic data sets provides very good evidence that habitat heterogeneity influences long term connectivity levels among local rabbit populations in the Mitchell region for both males and females. The habitat heterogeneity model thus provides a powerful approach for understanding the large scale processes that shape regional population systems in general. Therefore the model has the potential to be useful as a tool to aid in the management of those systems, whether it be for pest management or conservation purposes.
Resumo:
Probabilistic robot mapping techniques can produce high resolution, accurate maps of large indoor and outdoor environments. However, much less progress has been made towards robots using these maps to perform useful functions such as efficient navigation. This paper describes a pragmatic approach to mapping system development that considers not only the map but also the navigation functionality that the map must provide. We pursue this approach within a bio-inspired mapping context, and use esults from robot experiments in indoor and outdoor environments to demonstrate its validity. The research attempts to stimulate new research directions in the field of robot mapping with a proposal for a new approach that has the potential to lead to more complete mapping and navigation systems.
Resumo:
This paper presents a new method for winding configuration in planar magnetic elements with more than two layers. It has been proven by 3D Finite Element method and mathematical modeling that this suggested configuration results in reduction of the equivalent capacitive coupling in the planar inductor
Resumo:
The potential to sequester atmospheric carbon in agricultural and forest soils to offset greenhouse gas emissions has generated interest in measuring changes in soil carbon resulting from changes in land management. However, inherent spatial variability of soil carbon limits the precision of measurement of changes in soil carbon and hence, the ability to detect changes. We analyzed variability of soil carbon by intensively sampling sites under different land management as a step toward developing efficient soil sampling designs. Sites were tilled crop-land and a mixed deciduous forest in Tennessee, and old-growth and second-growth coniferous forest in western Washington, USA. Six soil cores within each of three microplots were taken as an initial sample and an additional six cores were taken to simulate resampling. Soil C variability was greater in Washington than in Tennessee, and greater in less disturbed than in more disturbed sites. Using this protocol, our data suggest that differences on the order of 2.0 Mg C ha(-1) could be detected by collection and analysis of cores from at least five (tilled) or two (forest) microplots in Tennessee. More spatial variability in the forested sites in Washington increased the minimum detectable difference, but these systems, consisting of low C content sandy soil with irregularly distributed pockets of organic C in buried logs, are likely to rank among the most spatially heterogeneous of systems. Our results clearly indicate that consistent intramicroplot differences at all sites will enable detection of much more modest changes if the same microplots are resampled.
Resumo:
Extensive data used to quantify broad soil C changes (without information about causation), coupled with intensive data used for attribution of changes to specific management practices, could form the basis of an efficient national grassland soil C monitoring network. Based on variability of extensive (USDA/NRCS pedon database) and intensive field-level soil C data, we evaluated the efficacy of future sample collection to detect changes in soil C in grasslands. Potential soil C changes at a range of spatial scales related to changes in grassland management can be verified (alpha=0.1) after 5 years with collection of 34, 224, 501 samples at the county, state, or national scales, respectively. Farm-level analysis indicates that equivalent numbers of cores and distinct groups of cores (microplots) results in lowest soil C coefficients of variation for a variety of ecosystems. Our results suggest that grassland soil C changes can be precisely quantified using current technology at scales ranging from farms to the entire nation. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper investigates the control of a HVDC link, fed from an AC source through a controlled rectifier and feeding an AC line through a controlled inverter. The overall objective is to maintain maximum possible link voltage at the inverter while regulating the link current. In this paper the practical feedback design issues are investigated with a view of obtaining simple, robust designs that are easy to evaluate for safety and operability. The investigations are applicable to back-to-back links used for frequency decoupling and to long DC lines. The design issues discussed include: (i) a review of overall system dynamics to establish the time scale of different feedback loops and to highlight feedback design issues; (ii) the concept of using the inverter firing angle control to regulate link current when the rectifier firing angle controller saturates; and (iii) the design issues for the individual controllers including robust design for varying line conditions and the trade-off between controller complexity and the reduction of nonlinearity and disturbance effects
Resumo:
Through a grant received from the Australian Library and Information Association (ALIA), members of Health Libraries Australia (HLA) are collaborating with a researcher/educator to conduct a twelve month research project with the goal of developing an educational framework for the Australian health librarianship workforce of the future. The collaboration comprises the principal researcher and a representative group of practitioners from different sectors of the health industry who are affiliated with ALIA in various committees, advisory groups and roles. The research has two main aims: to determine the future skills requirements for the health librarian workforce in Australia; and to develop a structured, modular education framework for specialist post-graduate qualifications together with a structure for ongoing continuing professional development. The paper highlights some of the major trends in the health sector and some of the main environmental influences that may act as drivers for change for health librarianship as a profession, and particularly for educating the future workforce. The research methodology is outlined and the main results are described; the findings are discussed with regard to their implications for the development of a structured, competency-based education framework.
Resumo:
This paper provides an interim report of a large empirical evaluation study in progress. An intervention was implemented to evaluate the effectiveness of the Pattern and Structure Mathematical Awareness Program (PASMAP) on Kindergarten students’ mathematical development. Four large schools (two from Sydney and two from Brisbane), 16 teachers and their 316 students participated in the first phase of a 2-year longitudinal study. Eight of 16 classes implemented the PASMAP program over three school terms. This paper provides an overview of key aspects of the intervention, and preliminary analysis of the impact of PASMAP on students’ representation, abstraction and generalisation of mathematical ideas.
Resumo:
Advances in safety research—trying to improve the collective understanding of motor vehicle crash causation—rests upon the pursuit of numerous lines of inquiry. The research community has focused on analytical methods development (negative binomial specifications, simultaneous equations, etc.), on better experimental designs (before-after studies, comparison sites, etc.), on improving exposure measures, and on model specification improvements (additive terms, non-linear relations, etc.). One might think of different lines of inquiry in terms of ‘low lying fruit’—areas of inquiry that might provide significant improvements in understanding crash causation. It is the contention of this research that omitted variable bias caused by the exclusion of important variables is an important line of inquiry in safety research. In particular, spatially related variables are often difficult to collect and omitted from crash models—but offer significant ability to better understand contributing factors to crashes. This study—believed to represent a unique contribution to the safety literature—develops and examines the role of a sizeable set of spatial variables in intersection crash occurrence. In addition to commonly considered traffic and geometric variables, examined spatial factors include local influences of weather, sun glare, proximity to drinking establishments, and proximity to schools. The results indicate that inclusion of these factors results in significant improvement in model explanatory power, and the results also generally agree with expectation. The research illuminates the importance of spatial variables in safety research and also the negative consequences of their omissions.