908 resultados para SOLAR-CELL APPLICATIONS
Resumo:
Energy efficiency and renewable energy use are two main priorities leading to industrial sustainability nowadays according to European Steel Technology Platform (ESTP). Modernization efforts can be done by industries to improve energy consumptions of the production lines. These days, steel making industrial applications are energy and emission intensive. It was estimated that over the past years, energy consumption and corresponding CO2 generation has increased steadily reaching approximately 338.15 parts per million in august 2010 [1]. These kinds of facts and statistics have introduced a lot of room for improvement in energy efficiency for industrial applications through modernization and use of renewable energy sources such as solar Photovoltaic Systems (PV).The purpose of this thesis work is to make a preliminary design and simulation of the solar photovoltaic system which would attempt to cover the energy demand of the initial part of the pickling line hydraulic system at the SSAB steel plant. For this purpose, the energy consumptions of this hydraulic system would be studied and evaluated and a general analysis of the hydraulic and control components performance would be done which would yield a proper set of guidelines contributing towards future energy savings. The results of the energy efficiency analysis showed that the initial part of the pickling line hydraulic system worked with a low efficiency of 3.3%. Results of general analysis showed that hydraulic accumulators of 650 liter size should be used by the initial part pickling line system in combination with a one pump delivery of 100 l/min. Based on this, one PV system can deliver energy to an AC motor-pump set covering 17.6% of total energy and another PV system can supply a DC hydraulic pump substituting 26.7% of the demand. The first system used 290 m2 area of the roof and was sized as 40 kWp, the second used 109 m2 and was sized as 15.2 kWp. It was concluded that the reason for the low efficiency was the oversized design of the system. Incremental modernization efforts could help to improve the hydraulic system energy efficiency and make the design of the solar photovoltaic system realistically possible. Two types of PV systems where analyzed in the thesis work. A method was found calculating the load simulation sequence based on the energy efficiency studies to help in the PV system simulations. Hydraulic accumulators integrated into the pickling line worked as energy storage when being charged by the PV system as well.
Resumo:
In Sweden, there are about 0.5 million single-family houses that are heated by electricity alone, and rising electricity costs force the conversion to other heating sources such as heat pumps and wood pellet heating systems. Pellet heating systems for single-family houses are currently a strongly growing market. Future lack of wood fuels is possible even in Sweden, and combining wood pellet heating with solar heating will help to save the bio-fuel resources. The objectives of this thesis are to investigate how the electrically heated single-family houses can be converted to pellet and solar heating systems, and how the annual efficiency and solar gains can be increased in such systems. The possible reduction of CO-emissions by combining pellet heating with solar heating has also been investigated. Systems with pellet stoves (both with and without a water jacket), pellet boilers and solar heating have been simulated. Different system concepts have been compared in order to investigate the most promising solutions. Modifications in system design and control strategies have been carried out in order to increase the system efficiency and the solar gains. Possibilities for increasing the solar gains have been limited to investigation of DHW-units for hot water production and the use of hot water for heating of dishwashers and washing machines via a heat exchanger instead of electricity (heat-fed appliances). Computer models of pellet stoves, boilers, DHW-units and heat-fed appliances have been developed and the parameters for the models have been identified from measurements on real components. The conformity between the models and the measurements has been checked. The systems with wood pellet stoves have been simulated in three different multi-zone buildings, simulated in detail with heat distribution through door openings between the zones. For the other simulations, either a single-zone house model or a load file has been used. Simulations were carried out for Stockholm, Sweden, but for the simulations with heat-fed machines also for Miami, USA. The foremost result of this thesis is the increased understanding of the dynamic operation of combined pellet and solar heating systems for single-family houses. The results show that electricity savings and annual system efficiency is strongly affected by the system design and the control strategy. Large reductions in pellet consumption are possible by combining pellet boilers with solar heating (a reduction larger than the solar gains if the system is properly designed). In addition, large reductions in carbon monoxide emissions are possible. To achieve these reductions it is required that the hot water production and the connection of the radiator circuit is moved to a well insulated, solar heated buffer store so that the boiler can be turned off during the periods when the solar collectors cover the heating demand. The amount of electricity replaced using systems with pellet stoves is very dependant on the house plan, the system design, if internal doors are open or closed and the comfort requirements. Proper system design and control strategies are crucial to obtain high electricity savings and high comfort with pellet stove systems. The investigated technologies for increasing the solar gains (DHW-units and heat-fed appliances) significantly increase the solar gains, but for the heat-fed appliances the market introduction is difficult due to the limited financial savings and the need for a new heat distribution system. The applications closest to market introduction could be for communal laundries and for use in sunny climates where the dominating part of the heat can be covered by solar heating. The DHW-unit is economical but competes with the internal finned-tube heat exchanger which is the totally dominating technology for hot water preparation in solar combisystems for single-family houses.
Resumo:
The Solar HeatIntegration NEtwork (SHINE) is a European research school in which 13 PhDstudents in solar thermal technologies are funded by the EU Marie-Curie program.It has five PhD course modules as well as workshops and seminars dedicated to PhDstudents both within the project as well as outside of it. The SHINE researchactivities focus on large solar heating systems and new applications: ondistrict heating, industrial processes and new storage systems. The scope ofthis paper is on systems for district heating for which there are five PhDstudents, three at universities and two at companies. The PhD students allstarted during the early part of 2014 and their initial work has concentratedon literature studies and on setting up models and data collection to be usedfor validation purposes. The PhD students will complete their studies in2017-18.
Resumo:
Increasing energy use has caused many environmental problems including global warming. Energy use is growing rapidly in developing countries and surprisingly a remarkable portion of it is associated with consumed energy to keep the temperature comfortable inside the buildings. Therefore, identifying renewable technologies for cooling and heating is essential. This study introduced applications of steel sheets integrated into the buildings to save energy based on existing technologies. In addition, the proposed application was found to have a considerable chance of market success. Also, satisfying energy needs for space heating and cooling in a single room by using one of the selected applications in different Köppen climate classes was investigated to estimate which climates have a proper potential for benefiting from the application. This study included three independent parts and the results related to each part have been used in the next part. The first part recognizes six different technologies through literature review including Cool Roof, Solar Chimney, Steel Cladding of Building, Night Radiative Cooling, Elastomer Metal Absorber, and Solar Distillation. The second part evaluated the application of different technologies by gathering the experts’ ideas via performing a Delphi method. The results showed that the Solar Chimney has a proper chance for the market. The third part simulated both a solar chimney and a solar chimney with evaporation which were connected to a single well insulated room with a considerable thermal mass. The combination was simulated as a system to estimate the possibility of satisfying cooling needs and heating needs in different climate classes. A Trombe-wall was selected as a sample design for the Solar Chimney and was simulated in different climates. The results implied that the solar chimney had the capability of reducing the cooling needs more than 25% in all of the studied locations and 100% in some locations with dry or temperate climate such as Mashhad, Madrid, and Istanbul. It was also observed that the heating needs were satisfied more than 50% in all of the studied locations, even for the continental climate such as Stockholm and 100% in most locations with a dry climate. Therefore, the Solar Chimney reduces energy use, saves environment resources, and it is a cost effective application. Furthermore, it saves the equipment costs in many locations. All the results mentioned above make the solar chimney a very practical and attractive tool for a wide range of climates.
Resumo:
Disease, injury, and age problems compromise human quality of life and continuously motivate the search for new and more efficacious therapeutic approaches. The field of Tissue Regeneration and Engineering has greatly evolved over the last years, mainly due to the combination of the important advances verified in Biomaterials Science and Engineering with those of Cell and Molecular Biology. In particular, a new and promising area arose – Nanomedicine – that takes advantage of the extremely small size and especial chemical and physical properties of Nanomaterials, offering powerful tools for health improvement. Research on Stem Cells, the self-renewing progenitors of body tissues, is also challenging to the medical and scientific communities, being expectable the appearance of new and exciting stem cell-based therapies in the next years. The control of cell behavior (namely, of cell proliferation and differentiation) is of key importance in devising strategies for Tissue Regeneration and Engineering. Cytokines, growth factors, transcription factors and other signaling molecules, most of them proteins, have been identified and found to regulate and support tissue development and regeneration. However, the application of these molecules in long-term regenerative processes requires their continuous presence at high concentrations as they usually present short half-lives at physiological conditions and may be rapidly cleared from the body. Alternatively, genes encoding such proteins can be introduced inside cells and be expressed using cell’s machinery, allowing an extended and more sustained production of the protein of interest (gene therapy). Genetic engineering of stem cells is particularly attractive because of their self-renewal capability and differentiation potential. For Tissue Regeneration and Engineering purposes, the patient’s own stem cells can be genetically engineered in vitro and, after, introduced in the body (with or without a scaffold) where they will not only modulate the behavior of native cells (stem cell-mediated gene therapy), but also directly participate in tissue repair. Cells can be genetically engineered using viral and non-viral systems. Viruses, as a result of millions of years of evolution, are very effective for the delivery of genes in several types of cells, including cells from primary sources. However, the risks associated with their use (like infection and immunogenic reactions) are driving the search for non-viral systems that will efficiently deliver genetic material into cells. Among them, chemical methods that are promising and being investigated use cationic molecules as carriers for DNA. In this case, gene delivery and gene expression level remain relatively low when primary cells are used. The main goal of this thesis was to develop and assess the in vitro potential of polyamidoamine (PAMAM) dendrimers based carriers to deliver genes to mesenchymal stem cells (MSCs). PAMAM dendrimers are monodispersive, hyperbranched and nanospherical molecules presenting unique characteristics that make them very attractive vehicles for both drug and gene delivery. Although they have been explored for gene delivery in a wide range of cell lines, the interaction and the usefulness of these molecules in the delivery of genes to MSCs remains a field to be explored. Adult MSCs were chosen for the studies due to their potential biomedical applications (they are considered multipotent cells) and because they present several advantages over embryonic stem cells, such as easy accessibility and the inexistence of ethical restrictions to their use. This thesis is divided in 5 interconnected chapters. Chapter I provides an overview of the current literature concerning the various non-viral systems investigated for gene delivery in MSCs. Attention is devoted to physical methods, as well as to chemical methods that make use of polymers (natural and synthetic), liposomes, and inorganic nanoparticles as gene delivery vectors. Also, it summarizes the current applications of genetically engineered mesenchymal stem cells using non-viral systems in regenerative medicine, with special focus on bone tissue regeneration. In Chapter II, the potential of native PAMAM dendrimers with amine termini to transfect MSCs is evaluated. The level of transfection achieved with the dendrimers is, in a first step, studied using a plasmid DNA (pDNA) encoding for the β-galactosidase reporter gene. The effect of dendrimer’s generation, cell passage number, and N:P ratio (where N= number of primary amines in the dendrimer; P= number of phosphate groups in the pDNA backbone) on the level of transfection is evaluated, being the values always very low. In a second step, a pDNA encoding for bone morphogenetic protein-2, a protein that is known for its role in MSCs proliferation and differentiation, is used. The BMP-2 content produced by transfected cells is evaluated by an ELISA assay and its effect on the osteogenic markers is analyzed through several classical assays including alkaline phosphatase activity (an early marker of osteogenesis), osteocalcin production, calcium deposition and mineralized nodules formation (late osteogenesis markers). Results show that a low transfection level is enough to induce in vitro osteogenic differentiation in MSCs. Next, from Chapter III to Chapter V, studies are shown where several strategies are adopted to change the interaction of PAMAM dendrimers with MSCs cell membrane and, as a consequence, to enhance the levels of gene delivery. In Chapter III, generations 5 and 6 of PAMAM dendrimers are surface functionalized with arginine-glycine-aspartic acid (RGD) containing peptides – experiments with dendrimers conjugated to 4, 8 and 16 RGD units were performed. The underlying concept is that by including the RGD integrin-binding motif in the design of the vectors and by forming RGD clusters, the level of transfection will increase as MSCs highly express integrins at their surface. Results show that cellular uptake of functionalized dendrimers and gene expression is enhanced in comparison with the native dendrimers. Furthermore, gene expression is dependent on both the electrostatic interaction established between the dendrimer moiety and the cell surface and the nanocluster RGD density. In Chapter IV, a new family of gene delivery vectors is synthesized consisting of a PAMAM dendrimer (generation 5) core randomly linked at the periphery to alkyl hydrophobic chains that vary in length and number. Herein, the idea is to take advantage of both the cationic nature of the dendrimer and the capacity of lipids to interact with biological membranes. These new vectors show a remarkable capacity for internalizing pDNA, being this effect positively correlated with the –CH2– content present in the hydrophobic corona. Gene expression is also greatly enhanced using the new vectors but, in this case, the higher efficiency is shown by the vectors containing the smallest hydrophobic chains. Finally, chapter V reports the synthesis, characterization and evaluation of novel gene delivery vectors based on PAMAM dendrimers (generation 5) conjugated to peptides with high affinity for MSCs membrane binding - for comparison, experiments are also done with a peptide with low affinity binding properties. These systems present low cytotoxicity and transfection efficiencies superior to those of native dendrimers and partially degraded dendrimers (Superfect®, a commercial product). Furthermore, with this biomimetic approach, the process of gene delivery is shown to be cell surface receptor-mediated. Overall, results show the potential of PAMAM dendrimers to be used, as such or modified, in Tissue Regeneration and Engineering. To our knowledge, this is the first time that PAMAM dendrimers are studied as gene delivery vehicles in this context and using, as target, a cell type with clinical relevancy. It is shown that the cationic nature of PAMAM dendrimers with amine termini can be synergistically combined with surface engineering approaches, which will ultimately result in suitable interactions with the cytoplasmic membrane and enhanced pDNA cellular entry and gene expression. Nevertheless, the quantity of pDNA detected inside cell nucleus is always very small when compared with the bigger amount reaching cytoplasm (accumulation of pDNA is evident in the perinuclear region), suggesting that the main barrier to transfection is the nuclear membrane. Future work can then be envisaged based on the versatility of these systems as biomedical molecular materials, such as the conjugation of PAMAM dendrimers to molecules able to bind nuclear membrane receptors and to promote nuclear translocation.
Resumo:
One of the main goals in Nanomedicine is to create innovative drug delivery systems (DDS) capable of delivering drugs into a specific location with high efficiency. In the development of DDS, some essential properties are desired, such as biocompatibility and biodegradability. Furthermore, an ideal DDS should be able to deliver a drug in a controlled manner and minimize its side effects. These two objectives are still a challenge for researchers all around the world. Nanogels are an excellent vehicle to use in drug delivery and several other applications due to their biocompatibility. They are polymer-based networks, chemically or physically crosslinked, with at least 80-90% water in their composition. Their properties can be tuned, like the nanogel size, multifunctionality and degradability. Nanogels are capable of carrying in their interior bioactive molecules and deliver them into cells. The main objective of this project was to produce nanogels for the delivery of anticancer drugs with the ability of responding to existent stimuli inside cells (cellresponsiveness nanogels) and/or of controlled drug delivery. The nanogels were mainly based on alginate (AG), a natural biopolymer, and prepared using emulsion approaches. After their synthesis, they were used to encapsulate doxorubicin (Dox) which was chosen as a model drug. In the first part of the experimental work, disulfide-linked AG nanogels were prepared and, as expected, were redox-sensitive to a reducing environment like the intracellular medium. In the second part, AG nanogels crosslinked with both calcium ions and cationic poly(amidoamine) dendrimers were developed with improved sustained drug delivery. The prepared nanogels were characterized in terms of size, chemical composition, morphology, and drug delivery behavior (under redox/pH stimuli). The in vitro cytotoxicity of the nanogels was also tested against CAL-72 cells (an osteosarcoma cell line).
Resumo:
Gene therapy, which involves the transfer of nucleic acid into target cells in patients, has become one of the most important and widely explored strategies to treat a variety of diseases, such as cancer, infectious diseases and genetic disorders. Relative to viral vectors that have high immunogenicity, toxicity and oncogenicity, non-viral vectors have gained a lot of interest in recent years. This is largely due to their ability to mimic viral vector features including the capacity to overcome extra- and intra-cellular barriers and to enhance transfection efficiency. Polyethyleneimine (PEI) has been extensively investigated as a non-viral vector. This cationic polymer, which is able to compact nucleic acid through electrostatic interactions and to transport it across the negatively charged cell membranes, has been shown to effectively transfect nucleic acid into different cell lines. Moreover, entrapment of gold nanoparticles (Au NPs) into such an amine-terminated polymer template has been shown to significantly enhance gene transfection efficiency. In this work, a novel non-viral nucleic acid vector system for enhanced and targeted nucleic acid delivery applications was developed. The system was based on the functionalization of PEI with folic acid (FA; for targeted delivery to cancer cells overexpressing FA receptors on their surface) using polyethylene glycol (PEG) as a linker molecule. This was followed by the preparation of PEI-entrapped Au NPs (Au PENPs; for enhancement of transfection efficiency). In the synthesis process, the primary amines of PEI were first partially modified with fluorescein isothiocyanate (FI) using a molar ratio of 1:7. The formed PEI-FI conjugate was then further modified with either PEG or PEGylated FA using a molar ratio of 1:1. This process was finally followed by entrapment of Au NPs into the modified polymers. The resulting conjugates and Au PENPs were characterized by several techniques, namely Nuclear Magnetic Resonance, Dynamic Light Scattering and Ultraviolet-Visible Spectroscopy, to assess their physicochemical properties. In the cell biology studies, the synthesized conjugates and their respective Au PENPs were shown to be non-toxic towards A2780 human ovarian carcinoma cells. The role of these materials as gene delivery agents was lastly evaluated. In the gene delivery studies, the A2780 cells were successfully transfected with plasmid DNA using the different vector systems. However, FA-modification and Au NPs entrapment were not determinant factors for improved transfection efficiency. In the gene silencing studies, on the other hand, the Au PENPs were shown to effectively deliver small interfering RNA, thereby reducing the expression of the B-cell lymphoma 2 protein. Based on these results, we can say that the systems synthesized in this work show potential for enhanced and targeted gene therapy applications.
Resumo:
Mitochondria are endosymbiotic organelles responsible for energy production in practically every eukaryotic cell. Their uniparental fashion of inheritance, maternally inherited in mammals, and the homogeneity of mitochondrial DNA (mtDNA) within individuals and matrilineages, are biological phenomena that remain unexplained. This paper reviews some of the recent findings on mitochondrial influences on the manner in which embryos develop and how their genotypes are inherited in mammals, with particular emphasis on the genetic bottleneck effect. Animal models carrying a mix of mtDNAs (heteroplasmic) have been produced by karyoplast and cytoplast transplantation to analyze the segregation patterns at different stages during embryogenesis, in fetuses and offspring. Comparisons performed between murine and bovine reveal interesting changes in segregation and replication of transplanted mtDNAs. We have recently obtained Bos indicus and Bos taurus fetuses and calves from embryos reconstructed using enucleated polymorphic oocytes of Bos taurus origin. These and other findings on mitochondrial biology will have important implications in determining the cytoplasmic genotype of clones and in the preservation of endangered breeds and species. (C) 1999 by Elsevier B.V.
Resumo:
This work purposes the application of a methodology to optimize the implantation cost of an wind-solar hybrid system for oil pumping. The developed model is estimated the implantation cost of system through Multiple Linear Regression technique, on the basis of the previous knowledge of variables: necessary capacity of storage, total daily energy demand, wind power, module power and module number. These variables are gotten by means of sizing. The considered model not only can be applied to the oil pumping, but also for any other purposes of electric energy generation for conversion of solar, wind or solar-wind energy, that demand short powers. Parametric statistical T-student tests had been used to detect the significant difference in the average of total cost to being considered the diameter of the wind, F by Snedecor in the variance analysis to test if the coefficients of the considered model are significantly different of zero and test not-parametric statistical by Friedman, toverify if there is difference in the system cost, by being considered the photovoltaic module powers. In decision of hypothesis tests was considered a 5%-significant level. The configurations module powers showed significant differences in total cost of investment by considering an electrical motor of 3 HP. The configurations module powers showed significant differences in total cost of investment by considering an electrical motor of 5 HP only to wind speed of 4m/s and 6 m/s in wind of 3 m, 4m and 5 m of diameter. There was not significant difference in costs to diameters of winds of 3 m and 4m. The mathematical model and the computational program may be used to others applications which require electrical between 2.250 W and 3.750 W. A computational program was developed to assist the study of several configurations that optimizes the implantation cost of an wind-solar system through considered mathematical model
Resumo:
An cylinder-parabolic solar concentrator is presented to produce steam for different applications. This prototype was built in glass fiber with dimensions that follow a study of optimization of parameters inherent in the optical reflection of sunlight by the surface of reflection and absorption of the same by tubing that leads the fluid of work. The surface of the concentrator of 2.24 m² has been covered by layers of mirror with 1.0 m of lenght and 2.0 cm wide. The absorb tubing consists of a copper tube diameter equal to 28 mm. The concentrator is moving to follow the apparent motion of the sun. It will be presented the processes of manufacturing and assembly of the concentrator proposed, which has as main characteristics the facilities construction and assembly, in addition to reduced cost. Will be presented data from tests performed to produce steam setting up some parameters that diagnose the efficiency of the concentrator. It will be demonstrated the viabilities thermal, economic and of materials of the proposed system.The maximum temperature achieved in the vacuum tube absorber was 232.1°C and average temperature for 1 hour interval was 171.5°C, obtained in a test with automation. The maximum temperature achieved in the output of water was 197.7°C for a temperature of 200.0°C in the absorber tube. The best average result of the water exit temperature to interval of 1 hour was 170.2°C for a temperature of 171.2°C, in the absorber tube, obtained in test with automation. Water exit mean temperatures were always above of the water steaming temperature. The concentrator present a useful efficiency of 38% and a production cost of approximately R$ 450,00 ( $ 160.34)
Resumo:
One of the main drawbacks of the GPS accuracy for L1 users is the error due to ionosphere. This error depends on the total electron content presents in the ionosphere, as well as of the carrier frequency. Some models have been developed to correct GPS observables of the systematic error due to the ionosphere. The model more known and used is the Klobuchar model, which corrected 50-60% of the ionospheric error approximately. Alternatively, IGS (International GNSS Service) also has developed a model called Global Ionospheric Map (GIM). These maps, in format IONEX, are available in the site of the IGS, and one of the applications of them is to correct the GPS observables of the error due to ionosphere. This work aims at evaluating the quality of GPS point positioning using the IGS ionospheric model in the southerm region of Brazil. Tests carried out had shown an average improvement in the horizontal and vertical determination of 44% and 77%, respectively, when GIM is used in the point positioning.
Resumo:
We imaged pores on the surface of the cell wall of three different industrial strains of Saccharomyces cerevisiae using atomic force microscopy. The pores could be enlarged using 10 mM diamide, an SH residue oxidant that attacks surface proteins. We found that two strains showed signs of oxidative damage via changes in density and diameter of the surface pores. We found that the German strain was resistant to diamide induced oxidative damage, even when the concentration of the oxidant was increased to 50 mM. The normal pore size found on the cell walls of American strains had diameters of about 200nm. Under conditions of oxidative stress the diameters changed to 400nm.This method may prove to be a useful rapid screening process (45-60 min) to determine which strains are oxidative resistant, as well as being able to screen for groups of yeast that are sensitive to oxidative stress. This rapid screening tool may have direct applications in molecular biology (transference of the genes to inside of living cells) and biotechnology (biotransformations reactions to produce chiral synthons in organic chemistry.
Resumo:
A Summary of different topological arrangements concerning a ZCS-PWM cell is presented, based on the analysis of its application in boost rectifying preregulators, controlled by the technique of instantaneous average values of input current, with the purpose of obtaining high-input-power-factor rectifier and high efficiency in single-phase applications in telecommunication systems. The main characteristics of each switching cell are described, providing conditions to establish a qualitative comparison among the structures. In addition, experimental results are presented for a prototype of the latest version of the ZCS-PWM boost rectifier, implemented for processing normal values of 1200 W output power and 400 V output average voltage, at 220 V Input RMS voltage and 50 kHz switching frequency.
Resumo:
This paper presents a new approach to develop Field Programmable Analog Arrays (FPAAs),(1) which avoids excessive number of programming elements in the signal path, thus enhancing the performance. The paper also introduces a novel FPAA architecture, devoid of the conventional switching and connection modules. The proposed FPAA is based on simple current mode sub-circuits. An uncompounded methodology has been employed for the programming of the Configurable Analog Cell (CAC). Current mode approach has enabled the operation of the FPAA presented here, over almost three decades of frequency range. We have demonstrated the feasibility of the FPAA by implementing some signal processing functions.
Resumo:
This thesis presents ⇡SOD-M (Policy-based Service Oriented Development Methodology), a methodology for modeling reliable service-based applications using policies. It proposes a model driven method with: (i) a set of meta-models for representing non-functional constraints associated to service-based applications, starting from an use case model until a service composition model; (ii) a platform providing guidelines for expressing the composition and the policies; (iii) model-to-model and model-to-text transformation rules for semi-automatizing the implementation of reliable service-based applications; and (iv) an environment that implements these meta-models and rules, and enables the application of ⇡SOD-M. This thesis also presents a classification and nomenclature for non-functional requirements for developing service-oriented applications. Our approach is intended to add value to the development of service-oriented applications that have quality requirements needs. This work uses concepts from the service-oriented development, non-functional requirements design and model-driven delevopment areas to propose a solution that minimizes the problem of reliable service modeling. Some examples are developed as proof of concepts