901 resultados para SIZE-CONTROLLED SYNTHESIS
Resumo:
There is an increasing need to treat effluents contaminated with phenol with advanced oxidation processes (AOPs) to minimize their impact on the environment as well as on bacteriological populations of other wastewater treatment systems. One of the most promising AOPs is the Fenton process that relies on the Fenton reaction. Nevertheless, there are no systematic studies on Fenton reactor networks. The objective of this paper is to develop a strategy for the optimal synthesis of Fenton reactor networks. The strategy is based on a superstructure optimization approach that is represented as a mixed integer non-linear programming (MINLP) model. Network superstructures with multiple Fenton reactors are optimized with the objective of minimizing the sum of capital, operation and depreciation costs of the effluent treatment system. The optimal solutions obtained provide the reactor volumes and network configuration, as well as the quantities of the reactants used in the Fenton process. Examples based on a case study show that multi-reactor networks yield decrease of up to 45% in overall costs for the treatment plant. (C) 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
Resumo:
We have synthesized phenylene-vinylene (PV) polymers containing segments with different conjugation lengths interspaced by random distributed aliphatic segments. Infrared (IR) and ultraviolet-visible (UV-vis) spectroscopies, hydrogen nuclear magnetic resonance ((1)H NMR) spectrometry and differential scanning calorimetry (DSC) were used to characterize the prepared copolymers` structures. Polymers molecular weights were determined by gel permeation chromatography (GPC). The effect of polymer structure and composition on emission properties was studied by fluorescence (PL) spectroscopy under different irradiation wavelength. The emission energy shift due to segments with longer conjugation lengths was minor owed to the low polymerization degree achieved.
Resumo:
Novel magnetic nanocomposite films with controlled morphology were produced via the electrostatic layer-by-layer assembly of cationic CoFe(2)O(4) nanoparticles and anionic poly(3,4-ethylenedioxy thiophene)/poly(styrene sulfonic acid) (PEDOT:PSS) complex. The electrostatic interaction between nanoparticle and the polyelectrolyte complex ensured a stepwise growth of the nanocomposite film with virtually identical amounts of materials being adsorbed at each deposition cycle as observed by UV-vis spectroscopy. AFM images acquired under the tapping mode revealed a globular morphology with dense and continuous layers of nanoparticles with voids being filled with polymeric material. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In previous studies, we presented main strategies for suspending the rotor of a mixed-flow type (centrifugal and axial) ventricular assist device (VAD), originally presented by the Institute Dante Pazzanese of Cardiology (IDPC), Brazil. Magnetic suspension is achieved by the use of a magnetic bearing architecture in which the active control is executed in only one degree of freedom, in the axial direction of the rotor. Remaining degrees of freedom, excepting the rotation, are restricted only by the attraction force between pairs of permanent magnets. This study is part of a joint project in development by IDPC and Escola Politecnica of Sao Paulo University, Brazil. This article shows advances in that project, presenting two promising solutions for magnetic bearings. One solution uses hybrid cores as electromagnetic actuators, that is, cores that combine iron and permanent magnets. The other solution uses actuators, also of hybrid type, but with the magnetic circuit closed by an iron core. After preliminary analysis, a pump prototype has been developed for each solution and has been tested. For each prototype, a brushless DC motor has been developed as the rotor driver. Each solution was evaluated by in vitro experiments and guidelines are extracted for future improvements. Tests have shown good results and demonstrated that one solution is not isolated from the other. One complements the other for the development of a single-axis-controlled, hybrid-type magnetic bearing for a mixed-flow type VAD.
Resumo:
Although theoretical models have already been proposed, experimental data is still lacking to quantify the influence of grain size upon coercivity of electrical steels. Some authors consider a linear inverse proportionality, while others suggest a square root inverse proportionality. Results also differ with regard to the slope of the reciprocal of grain size-coercive field relation for a given material. This paper discusses two aspects of the problem: the maximum induction used for determining coercive force and the possible effect of lurking variables such as the grain size distribution breadth and crystallographic texture. Electrical steel sheets containing 0.7% Si, 0.3% Al and 24 ppm C were cold-rolled and annealed in order to produce different grain sizes (ranging from 20 to 150 mu m). Coercive field was measured along the rolling direction and found to depend linearly on reciprocal of grain size with a slope of approximately 0.9 (A/m)mm at 1.0 T induction. A general relation for coercive field as a function of grain size and maximum induction was established, yielding an average absolute error below 4%. Through measurement of B(50) and image analysis of micrographs, the effects of crystallographic texture and grain size distribution breadth were qualitatively discussed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the present work we report the characterization of PbO-GeO(2) films containing silver nanoparticles (NPs). Radio Frequency (RF) co-sputtering was used for deposition of amorphous films on glass substrates. Targets of 60PbO-40GeO(2) (in wt%) and bulk silver with purity of 99.99% were RF-sputtered using 3.5 m Torr of argon. The concentration of silver and gold NPs in the films was controlled varying the RF-power applied to the targets (40-50W for the PbO-GeO(2) target; 6-8 W for the metallic target). The films obtained were annealed in air at different temperatures and various periods of time. Absorption measurements have shown strong NPs surface plasmon bands. Different widths and peak wavelengths were observed, indicating that size, shape and distribution of the silver NPs are dependent on the deposition process parameters and on the annealing of the samples. X-Ray Fluorescence and Transmission Electron Microscopy were also used to characterize the samples. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Isotretinoin is the drug of choice for the management of severe recalcitrant nodular acne. Nevertheless, some of its physical-chemical properties are still poorly known. Hence, the aim of our study consisted to comparatively evaluate the particle size distribution (PSD) and characterize the thermal behavior of the three encapsulated isotretinoin products in oil suspension (one reference and two generics) commercialized in Brazil. Here, we show that the PSD, estimated by laser diffraction and by polarized light microscopy, differed between the generics and the reference product. However, the thermal behavior of the three products, determined by thermogravimetry (TGA), differential thermal (DTA) analyses and differential scanning calorimetry (DSC), displayed no significant changes and were more thermostable than the isotretinoin standard used as internal control. Thus, our study suggests that PSD analyses in isotretinoin lipid-based formulations should be routinely performed in order to improve their quality and bioavailability. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The propolis has potential to be a natural food additive However its application is limited because It is alcohol-soluble and has strong flavour Microencapsulation may be an alternative for reducing these problems The aim of this study was to encapsulate propolis extract by complex coacervation using isolated soy protein and pectin as encapsulant agents The coacervation was studied as a function of pH (5 0 4 5 4 0 and 3 5) and the concentration of encapsulants and core (2 5 and 5 0 g/100 mL) Samples obtained at pH 4 0 in both concentrations were lyophilized and analyzed for hygroscopicity encapsulation efficiency particle size morphology thermal behavior stability of phenolic and flavonoids during storage as well as antioxidant and antimicrobial activities It was possible to encapsulate propolis extract by complex coacervation and to obtain it in the form of powder alcohol-free stable with antioxidant property antimicrobial activity against Staphylococcus aureus and with the possibility of controlled release in foods (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Hormones are likely to be important factors modulating the light-dependent anthocyanin accumulation. Here we analyzed anthocyanin contents in hypocotyls of near isogenic Micro-Tom (MT) tomato lines carrying hormone and phytochrome mutations, as single and double-mutant combinations. In order to recapitulate mutant phenotype, exogenous hormone applications were also performed Anthocyanin accumulation was promoted by exogenous abscisic acid (ABA) and inhibited by gibberellin (GA), in accordance to the reduced anthocyanin contents measured in ABA-deficient (notabills) and GA-constitutive response (procera) mutants. Exogenous cytokinin also enhanced anthocyanin levels in MT hypocotyls. Although auxin-insensitive chageotropica mutant exhibited higher anthocyanin contents, pharmacological approaches employing exogenous auxin and a transport inhibitor did not support a direct role of the hormone in anthocyanin accumulation Analysis of mutants exhibiting increased ethylene production (epwastic) or reduced sensitivity (Never ripe), together with pharmacological data obtained from plants treated with the hormone, indicated a limited role for ethylene in anthocyanin contents. Phytochrome-deficiency (aurea) and hormone double-mutant combinations exhibited phenotypes suggesting additive or synergistic interactions, but not fully espistatic ones, in the control of anthocyanin levels in tomato hypocotyls. Our results indicate that phytochrome-mediated anthocyanin accumulation in tomato hypocotyls is modulated by distinct hormone classes via both shared and independent pathways. (C) 2010 Elsevier Ireland Ltd. All rights reserved
Resumo:
We used environmental accounting to evaluate high-intensity clonal eucalyptus production in Sao Paolo, Brazil, converting inputs (environmental, material, and labor) to emergy units so ecological efficiency could be compared on a common basis. Input data were compiled under three pH management scenarios (lime, ash, and sludge). The dominant emergy input is environmental work (transpired water, similar to 58% of total emergy), followed by diesel (similar to 15%); most purchased emergy is invested during harvest (41.8% of 7-year production totals). Where recycled materials are used for pH amendment (ash or sludge instead of lime), we observe marked improvements in ecological efficiency; lime (raw) yielded the highest unit emergy value (UEV = emergy per unit energy in the product = 9.6E + 03 sej J(-1)), whereas using sludge and ash (recycled) reduced the UEV to 8.9E + 03 and 8.8E + 03 sej J(-1), respectively. The emergy yield ratio was similarly affected, suggesting better ecological return on energy invested. Sensitivity of resource use to other operational modifications (e.g., decreased diesel, labor, or agrochemicals) was small (<3% change). Emergy synthesis permits comparison of sustainability among forest production systems globally. This eucalyptus scheme shows the highest ecological efficiency of analyzed pulp production operations (UEV range = 1.1 to 3.6E + 04 sej J(-1)) despite high operational intensity.
Resumo:
Chitinase and peroxidase activity in different stages of eucalypt leaves after inoculation with Puccinia psidii and acibenzolar-S-metil To elucidate some biochemical processes during infection in the pathosystem Puccinia psidii x eucalyptus, the defense metabolism in different-stage leaves was compared between rust-resistant and susceptible clones, respectively. In addition, chitinase and peroxidase activities were assayed. Each treatment consisted of 4 replicates, in a completely randomized design: 2 clones, inoculated and not inoculated with P. psidii; sprayed with acibenzolar-S-methyl (ASM) and distilled water; and represented by the 1(st) leaf pair (size equivalent to 1/5 total leaf development), 2(nd) pair (2/5 total development), and 4(th) pair (4/5 total leaf length). Leaves were harvested in 4 periods: 0, 24, 72 and 96 hours after inoculation. Results indicated that ASM treatment or P. psidii action led to higher chitinase and peroxidase activity level but did not alter the expression of these activities in developed leaves (4(th) pair) during the experiment. Alterations in enzyme levels after inoculation were only observed in developing leaves (1(st) and 2(nd) pairs), which suggests that the response to infection was concomitant to chitinase and peroxidase synthesis. The highest increases in enzymatic activities were observed in resistant clones at 72 hours after inoculation and in susceptible ones previously treated with ASM and later inoculated with the pathogen.
Resumo:
Colletotrichum gossypii var. cephalosporioides, the fungus that causes ramulosis disease of cotton, is widespread in Brazil and can cause severe yield loss. Because weather conditions greatly affect disease development, the objective of this work was to develop weather-based models to assess disease favorability. Latent period, incidence, and severity of ramulosis symptoms were evaluated in controlled environment experiments using factorial combinations of temperature (15, 20, 25, 30, and 35 degrees C) and leaf wetness duration (0, 4, 8, 16, 32, and 64 h after inoculation). Severity was modeled as an exponential function of leaf wetness duration and temperature. At the optimum temperature of disease development, 27 degrees C, average latent period was 10 days. Maximum ramulosis severity occurred from 20 to 30 degrees C, with sharp decreases at lower and higher temperatures. Ramulosis severity increased as wetness periods were increased from 4 to 32 h. In field experiments at Piracicaba, Sao Paulo State, Brazil, cotton plots were inoculated (10(5) conidia ml(-1)) and ramulosis severity was evaluated weekly. The model obtained from the controlled environment study was used to generate a disease favorability index for comparison with disease progress rate in the field. Hourly measurements of solar radiation, temperature, relative humidity, leaf wetness duration, rainfall, and wind speed were also evaluated as possible explanatory variables. Both the disease favorability model and a model based on rainfall explained ramulosis growth rate well, with R(2) of 0.89 and 0.91, respectively. They are proposed as models of ramulosis development rate on cotton in Brazil, and weather-disease relationships revealed by this work can form the basis of a warning system for ramulosis development.
Resumo:
The objective of this study was to evaluate the effect of particle size and concentration of poly(F.-caprolactone) and adipate modified starch blend on mineralization in soils with differing textures, comparing it with polyethylene under the same experimental conditions. Two soil types were used: a Kandiudalfic Eutrudox with a clayey texture and an Arenic Hapludult with a sandy texture. The two different plastic specimens were incorporated in the form of plastic films with three increasing particle sizes and six doses, from 0 to 2.5 mg C g(-1) soil. Each plastic dose was incorporated into 200 g of soil placed in a hermetically closed jar at 28 degrees C, and incubated for a 120-day period to determine CO(2) evolution. Once again it was confirmed that polyethylene is almost non-biodegradable, in contrast to PCL/S, which can be defined as a biodegradable material. Soil texture affected the mineralization kinetics of the plastic specimens, with higher values for the clayey soil. No changes in soil microbial biomass-C or -N were observed by adding polyethylene and PCL/S to the soil. Also, no significant differences were observed on seed emergence and development of rice seedlings (Oryza sativa L.) in plastic modified soil. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Purpose Among environmental factors governing innumerous processes that are active in estuarine environments, those of edaphic character have received special attention in recent studies. With the objectives of determining the spatial patterns of soil attributes and components across different mangrove forest landscapes and obtaining additional information on the cause-effect relationships between these variables and position within the estuary, we analyzed several soil attributes in 31 mangrove soil profiles from the state of So Paulo (Guaruja, Brazil). Materials and methods Soil samples were collected at low tide along two transects within the CrumahA(0) mangrove forest. Samples were analyzed to determine pH, Eh, salinity, and the percentages of sand, silt, clay, total organic carbon (TOC), and total S. Mineralogy of the clay fraction (< 2 mm) was also studied by X-ray diffraction analysis, and partitioning of solid-phase Fe was performed by sequential extraction. Results and discussion The results obtained indicate important differences in soil composition at different depths and landscape positions, causing variations in physicochemical parameters, clay mineralogy, TOC contents, and iron geochemistry. The results also indicate that physicochemical conditions may vary in terms of different local microtopographies. Soil salinity was determined by relative position in relation to flood tide and transition areas with highlands. The proportions of TOC and total S are conditioned by the sedimentation of organic matter derived from vegetation and by the prevailing redox conditions, which clearly favored intense sulfate reduction in the soils (similar to 80% of the total Fe is Fe-pyrite). Particle-size distribution is conditioned by erosive/deposition processes (present and past) and probably by the positioning of ancient and reworked sandy ridges. The existing physicochemical conditions appear to contribute to the synthesis (smectite) and transformation (kaolinite) of clay minerals. Conclusions The results demonstrate that the position of soils in the estuary greatly affects soil attributes. Differences occur even at small scales (meters), indicating that both edaphic (soil classification, soil mineralogy, and soil genesis) and environmental (contamination and carbon stock) studies should take such variability into account.
Resumo:
The acyl-homoserine lactones (acyl-HSLs) produced by Methylobacterium mesophilicum isolated from orange trees infected with the citrus variegated chlorosis (CVC) disease have been studied, revealing the occurrence of six long-chain acyl-HSLs, i.e., the saturated homologues (S)-N-dodecanoyl (1) and (S)-N-tetradecanoyl-HSL (5), the uncommon odd-chain N-tridecanoyl-HSL (3), the new natural product (S)-N-(2E)-dodecenoyl-HSL (2), and the rare unsaturated homologues (S)-N-(7Z)-tetradecenoyl (4) and (S)-N-(2E,7Z)-tetradecadienyl-HSL (6). The absolute configurations of all HSLs were determined as 3S. Compounds 2 and 6 were synthesized for the first time. Antimicrobial assays with synthetic acyl-HSLs against Gram-positive bacterial endophytes co-isolated with M. mesophilicum from CVC-infected trees revealed low or no antibacterial activity.