964 resultados para SEQUENTIAL MONTE-CARLO
Resumo:
This paper presents a reliability-based reconfiguration methodology for power distribution systems. Probabilistic reliability models of the system components are considered and Monte Carlo method is used while evaluating the reliability of the distribution system. The reconfiguration is aimed at maximizing the reliability of the power supplied to the customers. A binary particle swarm optimization (BPSO) algorithm is used as a tool to determine the optimal configuration of the sectionalizing and tie switches in the system. The proposed methodology is applied on a modified IEEE 13-bus distribution system.
Resumo:
Purpose. To explore the role of the neighborhood environment in supporting walking Design. Cross sectional study of 10,286 residents of 200 neighborhoods. Participants were selected using a stratified two-stage cluster design. Data were collected by mail survey (68.5% response rate). Setting. The Brisbane City Local Government Area, Australia, 2007. Subjects. Brisbane residents aged 40 to 65 years. Measures. Environmental: street connectivity, residential density, hilliness, tree coverage, bikeways, and street lights within a one kilometer circular buffer from each resident’s home; and network distance to nearest river or coast, public transport, shop, and park. Walking: minutes in the previous week categorized as < 30 minutes, ≥ 30 < 90 minutes, ≥ 90 < 150 minutes, ≥ 150 < 300 minutes, and ≥ 300 minutes. Analysis. The association between each neighborhood characteristic and walking was examined using multilevel multinomial logistic regression and the model parameters were estimated using Markov chain Monte Carlo simulation. Results. After adjustment for individual factors, the likelihood of walking for more than 300 minutes (relative to <30 minutes) was highest in areas with the most connectivity (OR=1.93, 99% CI 1.32-2.80), the greatest residential density (OR=1.47, 99% CI 1.02-2.12), the least tree coverage (OR=1.69, 99% CI 1.13-2.51), the most bikeways (OR=1.60, 99% CI 1.16-2.21), and the most street lights (OR=1.50, 99% CI 1.07-2.11). The likelihood of walking for more than 300 minutes was also higher among those who lived closest to a river or the coast (OR=2.06, 99% CI 1.41-3.02). Conclusion. The likelihood of meeting (and exceeding) physical activity recommendations on the basis of walking was higher in neighborhoods with greater street connectivity and residential density, more street lights and bikeways, closer proximity to waterways, and less tree coverage. Interventions targeting these neighborhood characteristics may lead to improved environmental quality as well as lower rates of overweight and obesity and associated chromic disease.
Resumo:
A major focus of research in nanotechnology is the development of novel, high throughput techniques for fabrication of arbitrarily shaped surface nanostructures of sub 100 nm to atomic scale. A related pursuit is the development of simple and efficient means for parallel manipulation and redistribution of adsorbed atoms, molecules and nanoparticles on surfaces – adparticle manipulation. These techniques will be used for the manufacture of nanoscale surface supported functional devices in nanotechnologies such as quantum computing, molecular electronics and lab-on-achip, as well as for modifying surfaces to obtain novel optical, electronic, chemical, or mechanical properties. A favourable approach to formation of surface nanostructures is self-assembly. In self-assembly, nanostructures are grown by aggregation of individual adparticles that diffuse by thermally activated processes on the surface. The passive nature of this process means it is generally not suited to formation of arbitrarily shaped structures. The self-assembly of nanostructures at arbitrary positions has been demonstrated, though these have typically required a pre-patterning treatment of the surface using sophisticated techniques such as electron beam lithography. On the other hand, a parallel adparticle manipulation technique would be suited for directing the selfassembly process to occur at arbitrary positions, without the need for pre-patterning the surface. There is at present a lack of techniques for parallel manipulation and redistribution of adparticles to arbitrary positions on the surface. This is an issue that needs to be addressed since these techniques can play an important role in nanotechnology. In this thesis, we propose such a technique – thermal tweezers. In thermal tweezers, adparticles are redistributed by localised heating of the surface. This locally enhances surface diffusion of adparticles so that they rapidly diffuse away from the heated regions. Using this technique, the redistribution of adparticles to form a desired pattern is achieved by heating the surface at specific regions. In this project, we have focussed on the holographic implementation of this approach, where the surface is heated by holographic patterns of interfering pulsed laser beams. This implementation is suitable for the formation of arbitrarily shaped structures; the only condition is that the shape can be produced by holographic means. In the simplest case, the laser pulses are linearly polarised and intersect to form an interference pattern that is a modulation of intensity along a single direction. Strong optical absorption at the intensity maxima of the interference pattern results in approximately a sinusoidal variation of the surface temperature along one direction. The main aim of this research project is to investigate the feasibility of the holographic implementation of thermal tweezers as an adparticle manipulation technique. Firstly, we investigate theoretically the surface diffusion of adparticles in the presence of sinusoidal modulation of the surface temperature. Very strong redistribution of adparticles is predicted when there is strong interaction between the adparticle and the surface, and the amplitude of the temperature modulation is ~100 K. We have proposed a thin metallic film deposited on a glass substrate heated by interfering laser beams (optical wavelengths) as a means of generating very large amplitude of surface temperature modulation. Indeed, we predict theoretically by numerical solution of the thermal conduction equation that amplitude of the temperature modulation on the metallic film can be much greater than 100 K when heated by nanosecond pulses with an energy ~1 mJ. The formation of surface nanostructures of less than 100 nm in width is predicted at optical wavelengths in this implementation of thermal tweezers. Furthermore, we propose a simple extension to this technique where spatial phase shift of the temperature modulation effectively doubles or triples the resolution. At the same time, increased resolution is predicted by reducing the wavelength of the laser pulses. In addition, we present two distinctly different, computationally efficient numerical approaches for theoretical investigation of surface diffusion of interacting adparticles – the Monte Carlo Interaction Method (MCIM) and the random potential well method (RPWM). Using each of these approaches we have investigated thermal tweezers for redistribution of both strongly and weakly interacting adparticles. We have predicted that strong interactions between adparticles can increase the effectiveness of thermal tweezers, by demonstrating practically complete adparticle redistribution into the low temperature regions of the surface. This is promising from the point of view of thermal tweezers applied to directed self-assembly of nanostructures. Finally, we present a new and more efficient numerical approach to theoretical investigation of thermal tweezers of non-interacting adparticles. In this approach, the local diffusion coefficient is determined from solution of the Fokker-Planck equation. The diffusion equation is then solved numerically using the finite volume method (FVM) to directly obtain the probability density of adparticle position. We compare predictions of this approach to those of the Ermak algorithm solution of the Langevin equation, and relatively good agreement is shown at intermediate and high friction. In the low friction regime, we predict and investigate the phenomenon of ‘optimal’ friction and describe its occurrence due to very long jumps of adparticles as they diffuse from the hot regions of the surface. Future research directions, both theoretical and experimental are also discussed.
Resumo:
We evaluate the performance of several specification tests for Markov regime-switching time-series models. We consider the Lagrange multiplier (LM) and dynamic specification tests of Hamilton (1996) and Ljung–Box tests based on both the generalized residual and a standard-normal residual constructed using the Rosenblatt transformation. The size and power of the tests are studied using Monte Carlo experiments. We find that the LM tests have the best size and power properties. The Ljung–Box tests exhibit slight size distortions, though tests based on the Rosenblatt transformation perform better than the generalized residual-based tests. The tests exhibit impressive power to detect both autocorrelation and autoregressive conditional heteroscedasticity (ARCH). The tests are illustrated with a Markov-switching generalized ARCH (GARCH) model fitted to the US dollar–British pound exchange rate, with the finding that both autocorrelation and GARCH effects are needed to adequately fit the data.
Resumo:
A comprehensive voltage imbalance sensitivity analysis and stochastic evaluation based on the rating and location of single-phase grid-connected rooftop photovoltaic cells (PVs) in a residential low voltage distribution network are presented. The voltage imbalance at different locations along a feeder is investigated. In addition, the sensitivity analysis is performed for voltage imbalance in one feeder when PVs are installed in other feeders of the network. A stochastic evaluation based on Monte Carlo method is carried out to investigate the risk index of the non-standard voltage imbalance in the network in the presence of PVs. The network voltage imbalance characteristic based on different criteria of PV rating and location and network conditions is generalized. Improvement methods are proposed for voltage imbalance reduction and their efficacy is verified by comparing their risk index using Monte Carlo simulations.
Resumo:
Unmanned Aerial Vehicles (UAVs) are emerging as an ideal platform for a wide range of civil applications such as disaster monitoring, atmospheric observation and outback delivery. However, the operation of UAVs is currently restricted to specially segregated regions of airspace outside of the National Airspace System (NAS). Mission Flight Planning (MFP) is an integral part of UAV operation that addresses some of the requirements (such as safety and the rules of the air) of integrating UAVs in the NAS. Automated MFP is a key enabler for a number of UAV operating scenarios as it aids in increasing the level of onboard autonomy. For example, onboard MFP is required to ensure continued conformance with the NAS integration requirements when there is an outage in the communications link. MFP is a motion planning task concerned with finding a path between a designated start waypoint and goal waypoint. This path is described with a sequence of 4 Dimensional (4D) waypoints (three spatial and one time dimension) or equivalently with a sequence of trajectory segments (or tracks). It is necessary to consider the time dimension as the UAV operates in a dynamic environment. Existing methods for generic motion planning, UAV motion planning and general vehicle motion planning cannot adequately address the requirements of MFP. The flight plan needs to optimise for multiple decision objectives including mission safety objectives, the rules of the air and mission efficiency objectives. Online (in-flight) replanning capability is needed as the UAV operates in a large, dynamic and uncertain outdoor environment. This thesis derives a multi-objective 4D search algorithm entitled Multi- Step A* (MSA*) based on the seminal A* search algorithm. MSA* is proven to find the optimal (least cost) path given a variable successor operator (which enables arbitrary track angle and track velocity resolution). Furthermore, it is shown to be of comparable complexity to multi-objective, vector neighbourhood based A* (Vector A*, an extension of A*). A variable successor operator enables the imposition of a multi-resolution lattice structure on the search space (which results in fewer search nodes). Unlike cell decomposition based methods, soundness is guaranteed with multi-resolution MSA*. MSA* is demonstrated through Monte Carlo simulations to be computationally efficient. It is shown that multi-resolution, lattice based MSA* finds paths of equivalent cost (less than 0.5% difference) to Vector A* (the benchmark) in a third of the computation time (on average). This is the first contribution of the research. The second contribution is the discovery of the additive consistency property for planning with multiple decision objectives. Additive consistency ensures that the planner is not biased (which results in a suboptimal path) by ensuring that the cost of traversing a track using one step equals that of traversing the same track using multiple steps. MSA* mitigates uncertainty through online replanning, Multi-Criteria Decision Making (MCDM) and tolerance. Each trajectory segment is modeled with a cell sequence that completely encloses the trajectory segment. The tolerance, measured as the minimum distance between the track and cell boundaries, is the third major contribution. Even though MSA* is demonstrated for UAV MFP, it is extensible to other 4D vehicle motion planning applications. Finally, the research proposes a self-scheduling replanning architecture for MFP. This architecture replicates the decision strategies of human experts to meet the time constraints of online replanning. Based on a feedback loop, the proposed architecture switches between fast, near-optimal planning and optimal planning to minimise the need for hold manoeuvres. The derived MFP framework is original and shown, through extensive verification and validation, to satisfy the requirements of UAV MFP. As MFP is an enabling factor for operation of UAVs in the NAS, the presented work is both original and significant.
Resumo:
Purpose: The component modules in the standard BEAMnrc distribution may appear to be insufficient to model micro-multileaf collimators that have tri-faceted leaf ends and complex leaf profiles. This note indicates, however, that accurate Monte Carlo simulations of radiotherapy beams defined by a complex collimation device can be completed using BEAMnrc's standard VARMLC component module.---------- Methods: That this simple collimator model can produce spatially and dosimetrically accurate micro-collimated fields is illustrated using comparisons with ion chamber and film measurements of the dose deposited by square and irregular fields incident on planar, homogeneous water phantoms.---------- Results: Monte Carlo dose calculations for on- and off-axis fields are shown to produce good agreement with experimental values, even upon close examination of the penumbrae.--------- Conclusions: The use of a VARMLC model of the micro-multileaf collimator, along with a commissioned model of the associated linear accelerator, is therefore recommended as an alternative to the development or use of in-house or third-party component modules for simulating stereotactic radiotherapy and radiosurgery treatments. Simulation parameters for the VARMLC model are provided which should allow other researchers to adapt and use this model to study clinical stereotactic radiotherapy treatments.