925 resultados para Root canal with multi curvature
Resumo:
The Australia Telescope Low-brightness Survey (ATLBS) regions have been mosaic imaged at a radio frequency of 1.4 GHz with 6 `' angular resolution and 72 mu Jy beam(-1) rms noise. The images (centered at R. A. 00(h)35(m)00(s), decl. -67 degrees 00'00 `' and R. A. 00(h)59(m)17(s), decl. -67.00'00 `', J2000 epoch) cover 8.42 deg(2) sky area and have no artifacts or imaging errors above the image thermal noise. Multi-resolution radio and optical r-band images (made using the 4 m CTIO Blanco telescope) were used to recognize multi-component sources and prepare a source list; the detection threshold was 0.38 mJy in a low-resolution radio image made with beam FWHM of 50 `'. Radio source counts in the flux density range 0.4-8.7 mJy are estimated, with corrections applied for noise bias, effective area correction, and resolution bias. The resolution bias is mitigated using low-resolution radio images, while effects of source confusion are removed by using high-resolution images for identifying blended sources. Below 1 mJy the ATLBS counts are systematically lower than the previous estimates. Showing no evidence for an upturn down to 0.4 mJy, they do not require any changes in the radio source population down to the limit of the survey. The work suggests that automated image analysis for counts may be dependent on the ability of the imaging to reproduce connecting emission with low surface brightness and on the ability of the algorithm to recognize sources, which may require that source finding algorithms effectively work with multi-resolution and multi-wavelength data. The work underscores the importance of using source lists-as opposed to component lists-and correcting for the noise bias in order to precisely estimate counts close to the image noise and determine the upturn at sub-mJy flux density.
Resumo:
We propose an iterative data reconstruction technique specifically designed for multi-dimensional multi-color fluorescence imaging. Markov random field is employed (for modeling the multi-color image field) in conjunction with the classical maximum likelihood method. It is noted that, ill-posed nature of the inverse problem associated with multi-color fluorescence imaging forces iterative data reconstruction. Reconstruction of three-dimensional (3D) two-color images (obtained from nanobeads and cultured cell samples) show significant reduction in the background noise (improved signal-to-noise ratio) with an impressive overall improvement in the spatial resolution (approximate to 250 nm) of the imaging system. Proposed data reconstruction technique may find immediate application in 3D in vivo and in vitro multi-color fluorescence imaging of biological specimens. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4769058]
Resumo:
In March 2012, the authors met at the National Evolutionary Synthesis Center (NESCent) in Durham, North Carolina, USA, to discuss approaches and cooperative ventures in Indo-Pacific phylogeography. The group emerged with a series of findings: (1) Marine population structure is complex, but single locus mtDNA studies continue to provide powerful first assessment of phylogeographic patterns. (2) These patterns gain greater significance/power when resolved in a diversity of taxa. New analytical tools are emerging to address these analyses with multi-taxon approaches. (3) Genome-wide analyses are warranted if selection is indicated by surveys of standard markers. Such indicators can include discordance between genetic loci, or between genetic loci and morphology. Phylogeographic information provides a valuable context for studies of selection and adaptation. (4) Phylogeographic inferences are greatly enhanced by an understanding of the biology and ecology of study organisms. (5) Thorough, range-wide sampling of taxa is the foundation for robust phylogeographic inference. (6) Congruent geographic and taxonomic sampling by the Indo-Pacific community of scientists would facilitate better comparative analyses. The group concluded that at this stage of technology and software development, judicious rather than wholesale application of genomics appears to be the most robust course for marine phylogeographic studies. Therefore, our group intends to affirm the value of traditional (''unplugged'') approaches, such as those based on mtDNA sequencing and microsatellites, along with essential field studies, in an era with increasing emphasis on genomic approaches.
Resumo:
Plastic heterogeneity in indentation is fundamental for understanding mechanics of hardness testing and impression-based deformation processing methods. The heterogeneous deformation underlying plane-strain indentation was investigated in plastic loading of copper by a flat punch. Deformation parameters were measured, in situ, by tracking the motion of asperities in high-speed optical imaging. These measurements were coupled with multi-scale analyses of strength, microstructure and crystallographic texture in the vicinity of the indentation. Self-consistency is demonstrated in description of the deformation field using the in situ mechanics-based measurements and post-mortem materials characterization. Salient features of the punch indentation process elucidated include, among others, the presence of a dead-metal zone underneath the indenter, regions of intense strain rate (e. g. slip lines) and extent of the plastic flow field. Perhaps more intriguing are the transitions between shear-type and compression-type deformation modes over the indentation region that were quantified by the high-resolution crystallographic texture measurements. The evolution of the field concomitant to the progress of indentation is discussed and primary differences between the mechanics of indentation for a rigid perfectly plastic material and a strain-hardening material are described.
Resumo:
Turbulence and aeroacoustic noise high-order accurate schemes are required, and preferred, for solving complex flow fields with multi-scale structures. In this paper a super compact finite difference method (SCFDM) is presented, the accuracy is analysed and the method is compared with a sixth-order traditional and compact finite difference approximation. The comparison shows that the sixth-order accurate super compact method has higher resolving efficiency. The sixth-order super compact method, with a three-stage Runge-Kutta method for approximation of the compressible Navier-Stokes equations, is used to solve the complex flow structures induced by vortex-shock interactions. The basic nature of the near-field sound generated by interaction is studied.
Resumo:
An experimental investigation will be performed on the thermocapillary motion of two bubbles in Chinese return-satellite. The experiment will study the migration process of bubble caused by thermocapillary effect in microgravity environment, and their interaction between two bubbles. The bubble is driven by the thermocapillary stress on the surface on account on the variation of the surface tension with temperature. The interaction between two bubbles becomes significant as the separation distance between them is reduced drastically so that the bubble interaction has to be considered. Recently, the problem has been discussed on the method of successive reflections, and accurate migration velocities of two arbitrarily oriented bubbles were derived for the limit of small Marangoni and Reynolds numbers. Numerical results for the migration of the two bubbles show that the interaction between two bubbles has significant influence on their thermocapillary migration velocities with a bubble approaching another. However, there is a lack of experimental validate for the theoretic results. Now the experimental facility is designed for experimenting time after time. A cone-shaped top cover is used to expel bubble from the cell after experiment. But, the cone-shaped top cover can cause temperature uniformity on horizontal plane in whole cell. Therefore, a metal board with multi-holes is fixed under the top cover. The board is able to let the temperature distribution on the board uniform because of their high heat conductivity, and the bubble can pass through it. In the system two bubbles are injected into the test cell respectively by two sets of cylinder. And the bubbles sizes are controlled by two sets of step-by-step motor. It is very important problem that bubble can be divorced from the injecting mouth in microgravity environment. Thus, other two sets of device for injecting mother liquid were used to push bubble. The working principle of injecting mother liquid is to utilize pressure difference directly between test cell and reservoir
Resumo:
n-heptane/air premixed turbulent flames in the high-Karlovitz portion of the thin reaction zone regime are characterized and modeled in this thesis using Direct Numerical Simulations (DNS) with detailed chemistry. In order to perform these simulations, a time-integration scheme that can efficiently handle the stiffness of the equations solved is developed first. A first simulation with unity Lewis number is considered in order to assess the effect of turbulence on the flame in the absence of differential diffusion. A second simulation with non-unity Lewis numbers is considered to study how turbulence affects differential diffusion. In the absence of differential diffusion, minimal departure from the 1D unstretched flame structure (species vs. temperature profiles) is observed. In the non-unity Lewis number case, the flame structure lies between that of 1D unstretched flames with "laminar" non-unity Lewis numbers and unity Lewis number. This is attributed to effective Lewis numbers resulting from intense turbulent mixing and a first model is proposed. The reaction zone is shown to be thin for both flames, yet large chemical source term fluctuations are observed. The fuel consumption rate is found to be only weakly correlated with stretch, although local extinctions in the non-unity Lewis number case are well correlated with high curvature. These results explain the apparent turbulent flame speeds. Other variables that better correlate with this fuel burning rate are identified through a coordinate transformation. It is shown that the unity Lewis number turbulent flames can be accurately described by a set of 1D (in progress variable space) flamelet equations parameterized by the dissipation rate of the progress variable. In the non-unity Lewis number flames, the flamelet equations suggest a dependence on a second parameter, the diffusion of the progress variable. A new tabulation approach is proposed for the simulation of such flames with these dimensionally-reduced manifolds.
Resumo:
O objetivo deste trabalho consistiu na análise da infiltração apical em dentes retrobturados por três materiais: MTA, iROOT SP e Endo CPM Sealer. Para tal, foram utilizados 51 dentes humanos extraídos, incisivos centrais superiores, que foram instrumentados manualmente com limas tipo K, pela técnica Crown-down, obturados com compactação lateral e, após serem apicectomizados a 3mm aquém do ápice foram submetidos à retrobturação, com os três materiais propostos. As amostras foram divididas, randomicamente, em três grupos: GI MTA, GII iROOT SP e GIII Endo CPM Sealer, cada grupo com 15 amostras. Os dentes foram inseridos em tubos de eppendorfs, e feitos a impermeabilização do remanescente radicular utilizando duas camadas de cianocrilato, epóxi, e outra camada de esmalte. Em cada eppendorf foi adicionado caldo TSB estéril e uma suspensão de Enterococcos faecalis e adaptado ao frasco de vidro com meio de cultura enterococcosel. A infiltração bacteriana foi verificada pela turvação do meio de cultura. Após a análise no período de 60 dias, podemos concluir que durante esse tempo ocorreram infiltrações no Grupo I, 43,75 % das amostras apresentaram turvamento do meio de cultura demonstrando persistência da infecção. Já no Grupo II, 31,25 % das amostras tiveram crescimento bacteriano. Por fim no Grupo III, 25,00 % houve a infiltração. Grupos controle positivo e negativo para crescimento bacteriano foram realizados (n=3, cada). Os cimentos testados comportaram-se de maneira semelhante frente à infiltração bacteriana durante o período testado.
Resumo:
通过传输矩阵法分析了材料介电常数的变化对于单缺陷结构的磁光多层膜隔离器性能的响,并提出了一种多缺陷结构的磁光多层膜结构.同单缺陷结构相比,多缺陷结构的旋转角的频谱响应带宽有很大增加,对于材料介电常数变化的宽容性得到了一个数量级的提高.同时这种多缺陷的结构对于膜层厚度的变化和入射角度也有很好的宽容性.
Resumo:
There is ample evidence that humans are able to control the endpoint impedance of their arms in response to active destabilizing force fields. However, such fields are uncommon in daily life. Here, we examine whether the CNS selectively controls the endpoint impedance of the arm in the absence of active force fields but in the presence of instability arising from task geometry and signal-dependent noise (SDN) in the neuromuscular system. Subjects were required to generate forces, in two orthogonal directions, onto four differently curved rigid objects simulated by a robotic manipulandum. The endpoint stiffness of the limb was estimated for each object curvature. With increasing curvature, the endpoint stiffness increased mainly parallel to the object surface and to a lesser extent in the orthogonal direction. Therefore, the orientation of the stiffness ellipses did not orient to the direction of instability. Simulations showed that the observed stiffness geometries and their pattern of change with instability are the result of a tradeoff between maximizing the mechanical stability and minimizing the destabilizing effects of SDN. Therefore, it would have been suboptimal to align the stiffness ellipse in the direction of instability. The time course of the changes in stiffness geometry suggests that modulation takes place both within and across trials. Our results show that an increase in stiffness relative to the increase in noise can be sufficient to reduce kinematic variability, thereby allowing stiffness control to improve stability in natural tasks.
Resumo:
Xanthohumol, prenylchacone flavonoid, is a natural product with multi-biofunctions purified from Hops Humulus lupulus. Its anti-HIV-1 activity was tested in the present study. Results showed that xanthohumol inhibited HIV-1 induced cytopathic effects, the production of viral p24 antigen and reverse transcriptase in C8166 lymphocytes at non-cytotoxic concentration. The EC50 values were 0.82, 1.28 and 0.50 mug/ml, respectively. The therapeutic index (TI) was about 10.8. Xanthohumol also inhibited HIV-1 replication in PBMC with EC50 value of 20.74 mug/ml. The activity of recombinant HIV-1 reverse transcriptase and the HIV-1 entry were not inhibited by xanthohumol. The results from this study suggested that xanthohumol is effective against HIV-1 and might serve as an interesting lead compound. It may represent a novel chemotherapeutic agent for HIV-1 infection. However, the mechanism of its anti-HIV-1 effect needs to be further clarified. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We provide feedback control laws to stabilize formations of multiple, unit speed particles on smooth, convex, and closed curves with definite curvature. As in previous work we exploit an analogy with coupled phase oscillators to provide controls which isolate symmetric particle formations that are invariant to rigid translation of all the particles. In this work, we do not require all particles to be able to communicate; rather we assume that inter-particle communication is limited and can be modeled by a fixed, connected, and undirected graph. Because of their unique spectral properties, the Laplacian matrices of circulant graphs play a key role. The methodology is demonstrated using a superellipse, which is a type of curve that includes circles, ellipses, and rounded rectangles. These results can be used in applications involving multiple autonomous vehicles that travel at constant speed around fixed beacons. ©2006 IEEE.
Resumo:
Magneto-transport measurements have been carried out on a Si heavily delta-doped In0.52Al0.48As/In(0.53)G(0.47)As single quantum well in the temperature range between 1.5 and 60 K under magnetic field up to 10 T. We studied the Shubnikov-de Haas(SdH) effect and the Hall effect for the In0.52Al0.48As/In(0.53)G(0.47)As single quantum well occupied by two subbands, and have obtained the electron concentration, mobility, effective mass and energy levels respectively. The electron concentrations of the two subbands derived from mobility spectrum combined with multi-carrier fitting analysis are well consistent with the result from the SdH oscillation. From fast Fourier transform analysis for d(2)rho/dB(2)-1/B, it is observed that there is a frequency of f(1)-f(2) insensitive to the temperature, besides the frequencies f(1), f(2) for the two subbands and the frequency doubling 2f(1), both dependent on the temperature. This is because That the electrons occupying the two different subbands almost have the same effective mass in the quantum well and the magneto-intersubband scattering between the two subbands is strong.
Resumo:
This letter describes an approach to fabricating microlens arrays with low cost and large area through the combination of discontinuous dewetting and reversible water-ice transition via a soft lithography replica process. Microlenses with different curvature can be tuned by the modulation of the wettability of the substrates. The microlenses fabricated can project clear miniaturized images.
Resumo:
Carbon nanotubes paste (CNTP) electrode was prepared with multi-walled carbon nanotubes and methyl silicone oil. Polyoxometalates (POMs) were assembled on the electrode surface with different methods, and investigated by cyclic voltammetry and Raman spectroscopy. Experiments showed that POMs/CNTP electrode prepared by direct method had better performance. K6P2Mo18O62 center dot 14H(2)O (P2Mo18) assembled CNTP electrode (P2Mo18/CNTP) electrode possessed good reversibility and could catalyze the reduction of bromate and iodate in 0.1 M H2SO4 Solution. Further, the multilayer films of P2Mo18 assembled CNTP electrodes were fabricated by layer-by-layer technique, which showed higher electrocatalytic activities. All these POMs assembled CNTP electrodes prepared exhibited good stability.