854 resultados para Robertsonian rearrangement


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we used IGH sequence analysis to assess the maturational status of Waldenstrom's (WM) macroglobulinemia and its putative precursor immunoglobulin (Ig)-M monoclonal gammopathy of undetermined significance (MGUS). IGH sequence analysis was performed using standard methods in 23 cases (20 WM and 3 IgM MGUS as defined by consensus panel criteria). Waldenstrom's macroglobulinemia cases were characterized by heavily mutated IGH genes (median, 6.3%; range, 3.8%-13.9%) but without intraclonal variation (ICV). IgM MGUS was similarly characterized by somatic hypermutation (median, 7.5%; range, 7%-7.7%), but ICV was evident in 1 of the 3 cases. We would therefore conclude that WM is characterized by somatic hypermutation without ICV, which supports a derivation from postgerminal center/memory B cells. IgM MGUS is also characterized by somatic hypermutation but, in a manner similar to IgA/IgG MGUS, can be associated with ICV, although the significance of this remains unclear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: Analysis of IgH rearrangements in B-cell malignancies has provided clinical researchers with a wide range of information during the last few years. However, only a few studies have contributed to the characterization of these features in multiple myeloma (MM), and they have been focused on the analysis of the expressed IgH allele only. Comparison between the expressed and the non-functional IgH alleles allows further characterizion of the selection processes to which pre-myeloma cells are submitted. DESIGN AND METHODS: We analyzed a cohort of 84 untreated MM patients in order to characterize their functional VDJH and non-functional DJH rearrangements. The pattern of mutations and gene segment usage for both types of rearrangements was analyzed by polymerase chain reaction and sequencing. RESULTS: VH3 and VH1 family members were over- and under-represented, respectively. VH3-30 and VH3-15 segments were the most frequently used, whereas VH4-34 was found only in non-functional or heavily mutated VDJH rearrangements. DH2 and DH3 family members were over-represented in both VDJH and DJH repertoires, while the DH1 family was under-represented only in the productive VDJH rearrangements. Finally, DH3-22 and DH2-21 gene segments were found to be over-represented in the functional repertoire while segments commonly used by less mature B-cell malignancies, such as DH6-19 or DH3-3, were under-represented. INTERPRETATION AND CONCLUSIONS: Data reported here help to identify the clonogenic MM cell as a post-germinal center B cell that has undergone selection processes during the germinal center reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of Ig genes in B-cell malignancies has become an essential method in molecular diagnosis, and polymerase chain reaction (PCR) amplification of Ig heavy chain gene (IgH) rearrangements is now widely used for detection of clonality and minimal residual disease (MRD). Although several different sensitive protocols are now available for PCR analysis of IgH genes, they are frequently hampered owing to the high rate of somatic hypermutation present in multiple myeloma (MM). We recently described a new approach using incomplete DJH rearrangements as an alternative target. About 60% of MM samples contain an incomplete DJH rearrangement, 90% of them lacking on somatic mutations. This approach allows resolution of problems derived from primer mismatches, making DJH rearrangement a reliable and sensitive target for detection of clonality and MRD investigation in MM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a European BIOMED-2 collaborative study, multiplex PCR assays have successfully been developed and standardized for the detection of clonally rearranged immunoglobulin (Ig) and T-cell receptor (TCR) genes and the chromosome aberrations t(11;14) and t(14;18). This has resulted in 107 different primers in only 18 multiplex PCR tubes: three VH-JH, two DH-JH, two Ig kappa (IGK), one Ig lambda (IGL), three TCR beta (TCRB), two TCR gamma (TCRG), one TCR delta (TCRD), three BCL1-Ig heavy chain (IGH), and one BCL2-IGH. The PCR products of Ig/TCR genes can be analyzed for clonality assessment by heteroduplex analysis or GeneScanning. The detection rate of clonal rearrangements using the BIOMED-2 primer sets is unprecedentedly high. This is mainly based on the complementarity of the various BIOMED-2 tubes. In particular, combined application of IGH (VH-JH and DH-JH) and IGK tubes can detect virtually all clonal B-cell proliferations, even in B-cell malignancies with high levels of somatic mutations. The contribution of IGL gene rearrangements seems limited. Combined usage of the TCRB and TCRG tubes detects virtually all clonal T-cell populations, whereas the TCRD tube has added value in case of TCRgammadelta(+) T-cell proliferations. The BIOMED-2 multiplex tubes can now be used for diagnostic clonality studies as well as for the identification of PCR targets suitable for the detection of minimal residual disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DH-JH rearrangements of the Ig heavy-chain gene (IGH) occur early during B-cell development. Consequently, they are detected in precursor-B-cell acute lymphoblastic leukemias both at diagnosis and relapse. Incomplete DJH rearrangements have also been occasionally reported in mature B-cell lymphoproliferative disorders, but their frequency and immunobiological characteristics have not been studied in detail. We have investigated the frequency and characteristics of incomplete DJH as well as complete VDJH rearrangements in a series of 84 untreated multiple myeloma (MM) patients. The overall detection rate of clonality by amplifying VDJH and DJH rearrangements using family-specific primers was 94%. Interestingly, we found a high frequency (60%) of DJH rearrangements in this group. As expected from an immunological point of view, the vast majority of DJH rearrangements (88%) were unmutated. To the best of our knowledge, this is the first systematic study describing the incidence of incomplete DJH rearrangements in a series of unselected MM patients. These results strongly support the use of DJH rearrangements as PCR targets for clonality studies and, particularly, for quantification of minimal residual disease by real-time quantitative PCR using consensus JH probes in MM patients. The finding of hypermutation in a small proportion of incomplete DJH rearrangements (six out of 50) suggests important biological implications concerning the process of somatic hypermutation. Moreover, our data offer a new insight in the regulatory development model of IGH rearrangements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hypervariable regions of immunoglobulin heavy-chain (IgH) rearrangements provide a specific tumor marker in multiple myeloma (MM). Recently, real-time PCR assays have been developed in order to quantify the number of tumor cells after treatment. However, these strategies are hampered by the presence of somatic hypermutation (SH) in VDJH rearrangements from multiple myeloma (MM) patients, which causes mismatches between primers and/or probes and the target, leading to a nonaccurate quantification of tumor cells. Our group has recently described a 60% incidence of incomplete DJH rearrangements in MM patients, with no or very low rates of SH. In this study, we compare the efficiency of a real-time PCR approach for the analysis of both complete and incomplete IgH rearrangements in eight MM patients using only three JH consensus probes. We were able to design an allele-specific oligonucleotide for both the complete and incomplete rearrangement in all patients. DJH rearrangements fulfilled the criteria of effectiveness for real-time PCR in all samples (ie no unspecific amplification, detection of less than 10 tumor cells within 10(5) polyclonal background and correlation coefficients of standard curves higher than 0.98). By contrast, only three out of eight VDJH rearrangements fulfilled these criteria. Further analyses showed that the remaining five VDJH rearrangements carried three or more somatic mutations in the probe and primer sites, leading to a dramatic decrease in the melting temperature. These results support the use of incomplete DJH rearrangements instead of complete somatically mutated VDJH rearrangements for investigation of minimal residual disease in multiple myeloma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contaminating tumour cells in apheresis products have proved to influence the outcome of patients with multiple myeloma (MM) undergoing autologous stem cell transplantation (APBSCT). The gene scanning of clonally rearranged VDJ segments of the heavy chain immunoglobulin gene (VDJH) is a reproducible and easy to perform technique that can be optimised for clinical laboratories. We used it to analyse the aphereses of 27 MM patients undergoing APBSCT with clonally detectable VDJH segments, and 14 of them yielded monoclonal peaks in at least one apheresis product. The presence of positive results was not related to any pre-transplant characteristics, except the age at diagnosis (lower in patients with negative products, P = 0.04). Moreover, a better pre-transplant response trended to associate with a negative result (P = 0.069). Patients with clonally free products were more likely to obtain a better response to transplant (complete remission, 54% vs 28%; >90% reduction in the M-component, 93% vs 43% P = 0.028). In addition, patients transplanted with polyclonal products had longer progression-free survival, (39 vs 19 months, P = 0.037) and overall survival (81% vs 28% at 5 years, P = 0.045) than those transplanted with monoclonal apheresis. In summary, the gene scanning of apheresis products is a useful and clinically relevant technique in MM transplanted patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The c-kit proto-oncogen (CD117) has been described to be present in normal and neoplastic hemopoietic cells including both myeloid and lymphoid lineages. Among the normal lymphoid cells CD117 expression would be restricted to a small subset of NK-cells, and to early T-cell precursors and it is not expressed by normal B-cells. Regarding chronic lymphoproliferative disorders the only data provided up to now suggests that CD117 expression is restricted to cases of Hodgkin's disease and anaplastic large-cell lymphoma. In the present paper we describe a case of a B-cell chronic lymphoproliferative disorder carrying the t(14:18) translocation as demonstrated by molecular studies, in which the flow cytometric immunophenotypic analysis of both peripheral blood and bone marrow samples revealed the expression of high amounts of the CD117 antigen in the surface of the clonal B-cell population. Further studies are necessary to explore both the functional role of c-kit expression in the neoplastic B-cells from this patient and its potential utility for the diagnosis and follow-up of patients with B-cell non-Hodgkin's lymphoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present article, two new types of PML/RARA junctions are described. Both were identified in diagnostic samples from two t(15;17)(q22;q21)-positive acute promyelocytic leukemia (APL) patients who failed to achieve complete remission. By using different sets of primers, reverse transcriptase polymerase chain reaction (RT-PCR) of PML/RARA junctions showed atypical larger bands compared with those generated from the three classical PML breakpoints already described. Sequence analysis of the fusion region of the amplified cDNAs allowed us to determine the specificity of these fragments in both patients. This analysis showed two new hybrid transcripts that were 53 and 306 base pairs (bp) longer than that expressed by the NB4 cell line (PML breakpoint within intron 6), and are the result of the direct joining of RARA exon 3 with PML exon 7a (patient 2) or the 5' portion of PML exon 7b (patient 1), respectively. In patient 1, RT-PCR analysis of the reciprocal RARA/PML junction showed a smaller transcript than that expected in bcr1 cases, while in patient 2 no amplified fragment was obtained. Cytogenetic analysis and/or fluorescence in situ hybridization (FISH) showed that both patients had the t(15;17) translocation. The clinical and hematological profiles expressed by the two patients carrying these unexpected types of PML/RARA rearrangement did not differ significantly from that commonly seen in other APLs with the exception of the poor outcome. Genes Chromosomes Cancer 27:35-43, 2000.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: The main difficulty of PCR-based clonality studies for B-cell lymphoproliferative disorders (B-LPD) is discrimination between monoclonal and polyclonal PCR products, especially when there is a high background of polyclonal B cells in the tumor sample. Actually, PCR-based methods for clonality assessment require additional analysis of the PCR products in order to discern between monoclonal and polyclonal samples. Heteroduplex analysis represents an attractive approach since it is easy to perform and avoids the use of radioactive substrates or expensive equipment. DESIGN AND METHODS: We studied the sensitivity and specificity of heteroduplex PCR analysis for monoclonal detection in samples from 90 B-cell non Hodgkin's lymphoma (B-NHL) patients and in 28 individuals without neoplastic B-cell disorders (negative controls). Furthermore, in 42 B-NHL and in the same 28 negative controls, we compared heteroduplex analysis vs the classical PCR technique. We also compared ethidium bromide (EtBr) vs. silver nitrate (AgNO(3)) staining as well as agarose vs. polyacrylamide gel electrophoresis (PAGE). RESULTS: Using two pair consensus primers sited at VH (FR3 and FR2) and at JH, 91% of B-NHL samples displayed monoclonal products after heteroduplex PCR analysis using PAGE and AgNO(3) staining. Moreover, no polyclonal sample showed a monoclonal PCR product. By contrast, false positive results were obtained when using agarose (5/28) and PAGE without heteroduplex analysis: 2/28 and 8/28 with EtBr and AgNO(3) staining, respectively. In addition, false negative results only appeared with EtBr staining: 13/42 in agarose, 4/42 in PAGE without heteroduplex analysis and 7/42 in PAGE after heteroduplex analysis. INTERPRETATION AND CONCLUSIONS: We conclude that AgNO(3) stained PAGE after heteroduplex analysis is the most suitable strategy for detecting monoclonal rearrangements in B-NHL samples because it does not produce false-positive results and the risk of false-negative results is very low.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: Molecular analysis by PCR of monoclonally rearranged immunoglobulin (Ig) genes can be used for diagnosis in B-cell lymphoproliferative disorders (LPD), as well as for monitoring minimal residual disease (MRD) after treatment. This technique has the risk of false-positive results due to the "background" amplification of similar rearrangements derived from polyclonal B-cells. This problem can be resolved in advance by additional analyses that discern between polyclonal and monoclonal PCR products, such as the heteroduplex analysis. A second problem is that PCR frequently fails to amplify the junction regions, mainly due to somatic mutations frequently present in mature (post-follicular) B-cell lymphoproliferations. The use of additional targets (e.g. Ig light chain genes) can avoid this problem. DESIGN AND METHODS: We studied the specificity of heteroduplex PCR analysis of several Ig junction regions to detect monoclonal products in samples from 84 MM patients and 24 patients with B cell polyclonal disorders. RESULTS: Using two distinct VH consensus primers (FR3 and FR2) in combination with one JH primer, 79% of the MM displayed monoclonal products. The percentage of positive cases was increased by amplification of the Vlamda-Jlamda junction regions or kappa(de) rearrangements, using two or five pairs of consensus primers, respectively. After including these targets in the heteroduplex PCR analysis, 93% of MM cases displayed monoclonal products. None of the polyclonal samples analyzed resulted in monoclonal products. Dilution experiments showed that monoclonal rearrangements could be detected with a sensitivity of at least 10(-2) in a background with >30% polyclonal B-cells, the sensitivity increasing up to 10(-3) when the polyclonal background was

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrones or azomethine-N-oxides are important precursors for the synthesis of several heterocyclic systems. They belong to the allyl anion type 1,3-dipoles and possess unique structural features which make them extraordinarily useful synthons. They behave as 1,3-dipoles in 1,3-dipolar cycloaddition reactions and as electrophiles in reactions with organometallic reagents. These are the two basic reactions given by nitrones. Nitrones also act as ‘spin traps’ in which they react with short-lived radicals to furnish stable nitroxide radicals which can be detected and identified by electron paramagnetic resonance (EPR) spectroscopy. Recently SmI2 catalysed reductive cross-coupling reactions of nitrones have gained significant interest in which the reactions are initiated by single electron transfer (SET) to nitrones. Apart from these reactions, nitrones are also known to participate in reactions which are initiated by the nucleophilic attack of nitrone-oxygen. In our group, we have also explored the nucleophilic character of nitrones through various reactions. The results obtained enabled us to develop a novel two-step one-pot strategy for quinolines and indoles - the heterocycles renowned for their pharmacological applications, from nitrones and electron deficient acetylenes. Using dibenzoylacetylene and phenylbenzoylacetylene as dipolarophiles, we could introduce a desired functional group at a predetermined position of the quinolines or indoles to be synthesised. In this context, the thesis entitled “NUCLEOPHILIC ADDITION OF NITRONES TO ELECTRON DEFICIENT ACETYLENES AND RELATED STUDIES” portrays our attempt to expand the scope of our x novel synthetic protocol using ester functionalised acetylenes: dimethyl acetylenedicarboxylate (DMAD) and methyl propiolate. The thesis is organised in to five chapters. The first chapter briefly describes the different classes of reactions that nitrone functionality can tolerate. The research problem is defined at the end of this chapter. The second chapter describes the synthesis of different nitrones used for the present study. The optimisation and expansion of scope of the novel strategy towards quinoline synthesis is discussed in the third chapter. The fourth chapter portrays the synthesis of indole-3-carboxylates using the novel strategy. In the fifth chapter, the reaction of N-(2,6-dimethylphenyl) and N-(2,4,6-trimethylphenyl)nitrones are discussed. Here we also discuss the mechanistic reinvestigation of Baldwin’s proposal in the isoxazoline-oxazoline rearrangement. The major outcome of the work is given at the end of the thesis. The structural formulae, schemes, tables and figures are numbered chapter-wise since each chapter of the thesis is organized as an independent unit. All new compounds (except two compounds reported in fourth chapter) are fully characterised on the basis of spectral and analytical data and single crystal X-ray analysis on representative examples. Relevant references are included at the end of individual chapters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis outlines a more environmentally benign approach to diazo transfer, and the investigation of the reactivity of -diazocarbonyl compounds when subjected to transition metal and lanthanide catalysis. Extensive studies were carried out to find the optimum conditions for a greener diazo transfer methodology, and this was also applied to a continuous process for the synthesis of -diazo--ketoesters. The first chapter includes a literature review of the synthesis and subsequent reactivity of -diazocarbonyl compounds. An overview of the applications of flow chemistry for the synthesis of hazardous intermediates is also included. The applications of lanthanide catalysts in organic synthesis is also discussed. The second chapter outlines the extensive studies undertaken to determine the optimum conditions for a greener diazo transfer methodology, including base and solvent studies. Use of water as a viable solvent for diazo transfer was successfully investigated. Diazo transfer to a range of -diazo--ketoesters was achieved using 5 mol% triethylamine or DMAP in water with high conversions. Polystyrene-supported benzenesulfonyl azide as an alternative diazo transfer reagent was also explored, as well as investigations into cheaper generation of this safer reagent. This polymer-supported benzenesulfonyl azide was used with 25 mol% of base in water to achieve successful diazo transfer to a range of -diazo--ketoesters. The third chapter describes the application of the new methodology developed in Chapter 2 to a continuous processing approach. Various excellent conditions were identified for both batch and flow reactions. A series of -diazo--ketoesters were synthesised with excellent conversions using 25 mol% triethylamine in 90:10 acetone water using flow chemistry. Successful diazo transfer was also achieved using a polymer-supported benzenesulfonyl azide in water under flow conditions. The fourth chapter discusses the reactivity of -diazo--ketoesters under transition metal and lanthanide catalysis. This chapter describes the synthesis of a range of -ketoesters via transesterification, which were used to synthesise a range of novel -diazo--ketoesters that were used in subsequent decomposition reactions. A novel route to dioxinones via rhodium(II) catalysis is reported. Attempted OH and SH insertion reactions in the presence of various lanthanide(II) catalysts are outlined, leading to some unexpected and interesting rearrangement products. The experimental details, including spectroscopic and analytical data for all compounds prepared, are reported at the end of each chapter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The protein folding problem has been one of the most challenging subjects in biological physics due to its complexity. Energy landscape theory based on statistical mechanics provides a thermodynamic interpretation of the protein folding process. We have been working to answer fundamental questions about protein-protein and protein-water interactions, which are very important for describing the energy landscape surface of proteins correctly. At first, we present a new method for computing protein-protein interaction potentials of solvated proteins directly from SAXS data. An ensemble of proteins was modeled by Metropolis Monte Carlo and Molecular Dynamics simulations, and the global X-ray scattering of the whole model ensemble was computed at each snapshot of the simulation. The interaction potential model was optimized and iterated by a Levenberg-Marquardt algorithm. Secondly, we report that terahertz spectroscopy directly probes hydration dynamics around proteins and determines the size of the dynamical hydration shell. We also present the sequence and pH-dependence of the hydration shell and the effect of the hydrophobicity. On the other hand, kinetic terahertz absorption (KITA) spectroscopy is introduced to study the refolding kinetics of ubiquitin and its mutants. KITA results are compared to small angle X-ray scattering, tryptophan fluorescence, and circular dichroism results. We propose that KITA monitors the rearrangement of hydrogen bonding during secondary structure formation. Finally, we present development of the automated single molecule operating system (ASMOS) for a high throughput single molecule detector, which levitates a single protein molecule in a 10 µm diameter droplet by the laser guidance. I also have performed supporting calculations and simulations with my own program codes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microsecond long Molecular Dynamics (MD) trajectories of biomolecular processes are now possible due to advances in computer technology. Soon, trajectories long enough to probe dynamics over many milliseconds will become available. Since these timescales match the physiological timescales over which many small proteins fold, all atom MD simulations of protein folding are now becoming popular. To distill features of such large folding trajectories, we must develop methods that can both compress trajectory data to enable visualization, and that can yield themselves to further analysis, such as the finding of collective coordinates and reduction of the dynamics. Conventionally, clustering has been the most popular MD trajectory analysis technique, followed by principal component analysis (PCA). Simple clustering used in MD trajectory analysis suffers from various serious drawbacks, namely, (i) it is not data driven, (ii) it is unstable to noise and change in cutoff parameters, and (iii) since it does not take into account interrelationships amongst data points, the separation of data into clusters can often be artificial. Usually, partitions generated by clustering techniques are validated visually, but such validation is not possible for MD trajectories of protein folding, as the underlying structural transitions are not well understood. Rigorous cluster validation techniques may be adapted, but it is more crucial to reduce the dimensions in which MD trajectories reside, while still preserving their salient features. PCA has often been used for dimension reduction and while it is computationally inexpensive, being a linear method, it does not achieve good data compression. In this thesis, I propose a different method, a nonmetric multidimensional scaling (nMDS) technique, which achieves superior data compression by virtue of being nonlinear, and also provides a clear insight into the structural processes underlying MD trajectories. I illustrate the capabilities of nMDS by analyzing three complete villin headpiece folding and six norleucine mutant (NLE) folding trajectories simulated by Freddolino and Schulten [1]. Using these trajectories, I make comparisons between nMDS, PCA and clustering to demonstrate the superiority of nMDS. The three villin headpiece trajectories showed great structural heterogeneity. Apart from a few trivial features like early formation of secondary structure, no commonalities between trajectories were found. There were no units of residues or atoms found moving in concert across the trajectories. A flipping transition, corresponding to the flipping of helix 1 relative to the plane formed by helices 2 and 3 was observed towards the end of the folding process in all trajectories, when nearly all native contacts had been formed. However, the transition occurred through a different series of steps in all trajectories, indicating that it may not be a common transition in villin folding. The trajectories showed competition between local structure formation/hydrophobic collapse and global structure formation in all trajectories. Our analysis on the NLE trajectories confirms the notion that a tight hydrophobic core inhibits correct 3-D rearrangement. Only one of the six NLE trajectories folded, and it showed no flipping transition. All the other trajectories get trapped in hydrophobically collapsed states. The NLE residues were found to be buried deeply into the core, compared to the corresponding lysines in the villin headpiece, thereby making the core tighter and harder to undo for 3-D rearrangement. Our results suggest that the NLE may not be a fast folder as experiments suggest. The tightness of the hydrophobic core may be a very important factor in the folding of larger proteins. It is likely that chaperones like GroEL act to undo the tight hydrophobic core of proteins, after most secondary structure elements have been formed, so that global rearrangement is easier. I conclude by presenting facts about chaperone-protein complexes and propose further directions for the study of protein folding.