982 resultados para Rifle-ranges


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser diffraction (LD) and static image analysis (SIA) of rectangular particles [United States Pharmacopeia, USP30-NF25, General Chapter <776>, Optical Miroscopy.] have been systematically studied. To rule out sample dispersion and particle orientation as the root cause of differences in size distribution profiles, we immobilize powder samples on a glass plate by means of a dry disperser. For a defined region of the glass plate, we measure the diffraction pattern as induced by the dispersed particles, and the 2D dimensions of the individual particles using LD and optical microscopy, respectively. We demonstrate a correlation between LD and SIA, with the scattering intensity of the individual particles as the dominant factor. In theory, the scattering intensity is related to the square of the projected area of both spherical and rectangular particles. In traditional LD the size distribution profile is dominated by the maximum projected area of the particles (A). The diffraction diameters of a rectangular particle with length L and breadth B as measured by the LD instrument approximately correspond to spheres of diameter ØL and ØB respectively. Differences in the scattering intensity between spherical and rectangular particles suggest that the contribution made to the overall LD volume probability distribution by each rectangular particle is proportional to A2/L and A2/B. Accordingly, for rectangular particles the scattering intensity weighted diffraction diameter (SIWDD) explains an overestimation of their shortest dimension and an underestimation of their longest dimension. This study analyzes various samples of particles whose length ranges from approximately 10 to 1000 μm. The correlation we demonstrate between LD and SIA can be used to improve validation of LD methods based on SIA data for a variety of pharmaceutical powders all with a different rectangular particle size and shape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study shows how a new generation of terrestrial laser scanners can be used to investigate glacier surface ablation and other elements of glacial hydrodynamics at exceptionally high spatial and temporal resolution. The study area is an Alpine valley glacier, Haut Glacier d'Arolla, Switzerland. Here we use an ultra-long-range lidar RIEGL VZ-6000 scanner, having a laser specifically designed for measurement of snow- and ice-cover surfaces. We focus on two timescales: seasonal and daily. Our results show that a near-infrared scanning laser system can provide high-precision elevation change and ablation data from long ranges, and over relatively large sections of the glacier surface. We use it to quantify spatial variations in the patterns of surface melt at the seasonal scale, as controlled by both aspect and differential debris cover. At the daily scale, we quantify the effects of ogive-related differences in ice surface debris content on spatial patterns of ablation. Daily scale measurements point to possible hydraulic jacking of the glacier associated with short-term water pressure rises. This latter demonstration shows that this type of lidar may be used to address subglacial hydrologic questions, in addition to motion and ablation measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intravascular brachytherapy with beta sources has become a useful technique to prevent restenosis after cardiovascular intervention. In particular, the Beta-Cath high-dose-rate system, manufactured by Novoste Corporation, is a commercially available 90Sr 90Y source for intravascular brachytherapy that is achieving widespread use. Its dosimetric characterization has attracted considerable attention in recent years. Unfortunately, the short ranges of the emitted beta particles and the associated large dose gradients make experimental measurements particularly difficult. This circumstance has motivated the appearance of a number of papers addressing the characterization of this source by means of Monte Carlo simulation techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutral and selective processes c an drive repeated patterns of evolu tion in dif ferent groups of populationsexp eriencing similar ecol ogica l gradients. In this paper, we used a combinat ion of nucl ear and mitochondrialDNA markers, as well as geometric morphometrics, to investigate repeated patterns of morphological andgenetic divergence of E uropean minnows in two mountain ranges : the Pyrenees and the Al ps. Europeanminnows (Phoxinus phoxinus) are cyprinid fish i nha bitin g most freshwater bodies in Europe, including those indifferent mountain r anges that could act as major geographical barriers to gene flow. We explored patterns ofP. phoxinus phenotypic and genetic di versi fication along a gradi ent of alti tude common to the two mountainranges, and tested for isolation by distance (IBD), isolation by environment (IBE) and isolation by adaptation(IBA). The results indicated that populations from the Pyr enees a nd the Alps bel ong to two well differentiated,reciprocally monophyletic mt DNA lineages. Substantial genetic differentiation due to geographical isolationwithin and between populations from the Pyrenees and the Alps was also found using rapidly evolving AFLPsmarkers (isolation by distance or IBD), as well as morphological differences between mountain ranges. Als o,morphology varied strong ly with elevation and so did genetic differentiation to a lower extent. Despitemoderate evidence for IBE and IBA, and therefore of repeated evolution, substantial population heterogeneitywas found at the genetic level, suggesting that selection and population specific genetic drift act in concert toaffect genetic divergence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybridization by introduced taxa is a major threat to native species. Characterizing human introductions is thus one of the missions of conservation geneticists. Here we survey a declining population of the regionally endangered European tree frog (Hyla arborea) in the Grangettes natural reserve (Rhone valley, Western Switzerland), where previous evidence indicated human introduction of the Italian taxon H. intermedia. We combined fast-evolving mitochondrial and nuclear markers and an extended sampling to conduct population genetic analyses of the Grangettes and putative source areas. We show that the Grangettes population is a hybrid swarm, with all individuals featuring recent nuclear admixture and mitochondrial DNA of introduced H. intermedia, most likely of proximate south Alpine origin. In contrast, H. arborea and H. intermedia hardly introgress in their natural parapatric ranges, consistent with an advanced reproductive isolation. Thus, potential hybrid incompatibilities may account for the strong decline of this population, despite important conservation efforts. Although their hybrid nature makes them a priori unworthy of any protection, we propose specific measures to recover local H. arborea gene pool and preserve tree frogs in the Grangettes, the last population remaining from this heavily impacted part of the Alps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Streptavidin, a tetrameric protein secreted by Streptomyces avidinii, binds tightly to a small growth factor biotin. One of the numerous applications of this high-affinity system comprises the streptavidin-coated surfaces of bioanalytical assays which serve as universal binders for straightforward immobilization of any biotinylated molecule. Proteins can be immobilized with a lower risk of denaturation using streptavidin-biotin technology in contrast to direct passive adsorption. The purpose of this study was to characterize the properties and effects of streptavidin-coated binding surfaces on the performance of solid-phase immunoassays and to investigate the contributions of surface modifications. Various characterization tools and methods established in the study enabled the convenient monitoring and binding capacity determination of streptavidin-coated surfaces. The schematic modeling of the monolayer surface and the quantification of adsorbed streptavidin disclosed the possibilities and the limits of passive adsorption. The defined yield of 250 ng/cm2 represented approximately 65 % coverage compared with a modelled complete monolayer, which is consistent with theoretical surface models. Modifications such as polymerization and chemical activation of streptavidin resulted in a close to 10-fold increase in the biotin-binding densities of the surface compared with the regular streptavidin coating. In addition, the stability of the surface against leaching was improved by chemical modification. The increased binding densities and capacities enabled wider high-end dynamic ranges in the solid-phase immunoassays, especially when using the fragments of the capture antibodies instead of intact antibodies for the binding of the antigen. The binding capacity of the streptavidin surface was not, by definition, predictive of the low-end performance of the immunoassays nor the assay sensitivity. Other features such as non-specific binding, variation and leaching turned out to be more relevant. The immunoassays that use a direct surface readout measurement of time-resolved fluorescence from a washed surface are dependent on the density of the labeled antibodies in a defined area on the surface. The binding surface was condensed into a spot by coating streptavidin in liquid droplets into special microtiter wells holding a small circular indentation at the bottom. The condensed binding area enabled a denser packing of the labeled antibodies on the surface. This resulted in a 5 - 6-fold increase in the signal-to-background ratios and an equivalent improvement in the detection limits of the solid-phase immunoassays. This work proved that the properties of the streptavidin-coated surfaces can be modified and that the defined properties of the streptavidin-based immunocapture surfaces contribute to the performance of heterogeneous immunoassays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human biomonitoring (HBM) is an effective tool for assessing actual exposure to chemicals that takes into account all routes of intake. Although hair analysis is considered to be an optimal biomarker for assessing mercury exposure, the lack of harmonization as regards sampling and analytical procedures has often limited the comparison of data at national and international level. The European-funded projects COPHES and DEMOCOPHES developed and tested a harmonized European approach to Human Biomonitoring in response to the European Environment and Health Action Plan. Herein we describe the quality assurance program (QAP) for assessing mercury levels in hair samples from more than 1800 mother-child pairs recruited in 17 European countries. To ensure the comparability of the results, standard operating procedures (SOPs) for sampling and for mercury analysis were drafted and distributed to participating laboratories. Training sessions were organized for field workers and four external quality-assessment exercises (ICI/EQUAS), followed by the corresponding web conferences, were organized between March 2011 and February 2012. ICI/EQUAS used native hair samples at two mercury concentration ranges (0.20-0.71 and 0.80-1.63) per exercise. The results revealed relative standard deviations of 7.87-13.55% and 4.04-11.31% for the low and high mercury concentration ranges, respectively. A total of 16 out of 18 participating laboratories the QAP requirements and were allowed to analyze samples from the DEMOCOPHES pilot study. Web conferences after each ICI/EQUAS revealed this to be a new and effective tool for improving analytical performance and increasing capacity building. The procedure developed and tested in COPHES/DEMOCOPHES would be optimal for application on a global scale as regards implementation of the Minamata Convention on Mercury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the factors that shape adaptive genetic variation across species niches has become of paramount importance in evolutionary ecology, especially to understand how adaptation to changing climate affects the geographic range of species. The distribution of adaptive alleles in the ecological niche is determined by the emergence of novel mutations, their fitness consequences and gene flow that connects populations across species niches. Striking demographical differences and source sink dynamics of populations between the centre and the margin of the niche can play a major role in the emergence and spread of adaptive alleles. Although some theoretical predictions have long been proposed, the origin and distribution of adaptive alleles within species niches remain untested. In this paper, we propose and discuss a novel empirical approach that combines landscape genetics with species niche modelling, to test whether alleles that confer local adaptation are more likely to occur in either marginal or central populations of species niches. We illustrate this new approach by using a published data set of 21 alpine plant species genotyped with a total of 2483 amplified fragment length polymorphisms (AFLP), distributed over more than 1733 sampling sites across the Alps. Based on the assumption that alleles that were statistically associated with environmental variables were adaptive, we found that adaptive alleles in the margin of a species niche were also present in the niche centre, which suggests that adaptation originates in the niche centre. These findings corroborate models of species range evolution, in which the centre of the niche contributes to the emergence of novel adaptive alleles, which diffuse towards niche margins and facilitate niche and range expansion through subsequent local adaptation. Although these results need to be confirmed via fitness measurements in natural populations and functionally characterised genetic sequences, this study provides a first step towards understanding how adaptive genetic variation emerges and shapes species niches and geographic ranges along environmental gradients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background To determine generic utilities for Spanish chronic obstructive pulmonary disease (COPD) patients stratified by different classifications: GOLD 2007, GOLD 2013, GesEPOC 2012 and BODEx index. Methods Multicentre, observational, cross-sectional study. Patients were aged ≥40 years, with spirometrically confirmed COPD. Utility values were derived from EQ-5D-3 L. Means, standard deviations (SD), medians and interquartile ranges (IQR) were computed based on the different classifications. Differences in median utilities between groups were assessed by non-parametric tests. Results 346 patients were included, of which 85.5% were male with a mean age of 67.9 (SD = 9.7) years and a mean duration of COPD of 7.6 (SD = 5.8) years; 80.3% were ex-smokers and the mean smoking history was 54.2 (SD = 33.2) pack-years. Median utilities (IQR) by GOLD 2007 were 0.87 (0.22) for moderate; 0.80 (0.26) for severe and 0.67 (0.42) for very-severe patients (p < 0.001 for all comparisons). Median utilities by GOLD 2013 were group A: 1.0 (0.09); group B: 0.87 (0.13); group C: 1.0 (0.16); group D: 0.74 (0.29); comparisons were statistically significant (p < 0.001) except A vs C. Median utilities by GesEPOC phenotypes were 0.84 (0.33) for non exacerbator; 0.80 (0.26) for COPD-asthma overlap; 0.71 (0.62) for exacerbator with emphysema; 0.72 (0.57) for exacerbator with chronic bronchitis (p < 0.001). Comparisons between patients with or without exacerbations and between patients with COPD-asthma overlap and exacerbator with chronic bronchitis were statistically-significant (p < 0.001). Median utilities by BODEx index were: group 02: 0.89 (0.20); group 34: 0.80 (0.27); group 56: 0.67 (0.29); group 79: 0.41 (0.31). All comparisons were significant (p < 0.001) except between groups 34 and 56. Conclusion Irrespective of the classification used utilities were associated to disease severity. Some clinical phenotypes were associated with worse utilities, probably related to a higher frequency of exacerbations. GOLD 2007 guidelines and BODEx index better discriminated patients with a worse health status than GOLD 2013 guidelines, while GOLD 2013 guidelines were better able to identify a smaller group of patients with the best health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim Previous research on how climatic niches vary across species ranges has focused on a limited number of species, mostly invasive, and has not, to date, been very conclusive. Here we assess the degree of niche conservatism between distant populations of native alpine plant species that have been separated for thousands of years. Location European Alps and Fennoscandia. Methods Of the studied pool of 888 terrestrial vascular plant species occurring in both the Alps and Fennoscandia, we used two complementary approaches to test and quantify climatic-niche shifts for 31 species having strictly disjunct populations and 358 species having either a contiguous or a patchy distribution with distant populations. First, we used species distribution modelling to test for a region effect on each species' climatic niche. Second, we quantified niche overlap and shifts in niche width (i.e. ecological amplitude) and position (i.e. ecological optimum) within a bi-dimensional climatic space. Results Only one species (3%) of the 31 species with strictly disjunct populations and 58 species (16%) of the 358 species with distant populations showed a region effect on their climatic niche. Niche overlap was higher for species with strictly disjunct populations than for species with distant populations and highest for arctic-alpine species. Climatic niches were, on average, wider and located towards warmer and wetter conditions in the Alps. Main conclusion Climatic niches seem to be generally conserved between populations that are separated between the Alps and Fennoscandia and have probably been so for 10,000-15,000 years. Therefore, the basic assumption of species distribution models that a species' climatic niche is constant in space and time - at least on time scales 104 years or less - seems to be largely valid for arctic-alpine plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forensic Anthropology and Bioarchaeology studies depend critically on the accuracy and reliability of age-estimation techniques. In this study we have evaluated two age-estimation methods for adults based on the pubic symphysis (Suchey-Brooks) and the auricular surface (Buckberry-Chamberlain) in a current sample of 139 individuals (67 women and 72 men) from Madrid in order to verify the accuracy of both methods applied to a sample of innominate bones from the central Iberian Peninsula. Based on the overall results of this study, the Buckberry-Chamberlain method seems to be the method that provides better estimates in terms of accuracy (percentage of hits) and absolute difference to the chronological age taking into account the total sample. The percentage of hits and mean absolute difference of the Buckberry-Chamberlain and Suchey-Brooks methods are 97.3% and 11.24 years, and 85.7% and 14.38 years, respectively. However, this apparently greater applicability of the Buckberry-Chamberlain method is mainly due to the broad age ranges provided. Results indicated that Suchey-Brooks method is more appropriate for populations with a majority of young individuals, whereas Buckberry-Chamberlain method is recommended for populations with a higher percentage of individuals in the range 60-70 years. These different age estimation methodologies significantly influence the resulting demographic profile, consequently affecting the biological characteristics reconstruction of the samples in which they are applied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding and quantifying seismic energy dissipation, which manifests itself in terms of velocity dispersion and attenuation, in fluid-saturated porous rocks is of considerable interest, since it offers the perspective of extracting information with regard to the elastic and hydraulic rock properties. There is increasing evidence to suggest that wave-induced fluid flow, or simply WIFF, is the dominant underlying physical mechanism governing these phenomena throughout the seismic, sonic, and ultrasonic frequency ranges. This mechanism, which can prevail at the microscopic, mesoscopic, and macroscopic scale ranges, operates through viscous energy dissipation in response to fluid pressure gradients and inertial effects induced by the passing wavefield. In the first part of this thesis, we present an analysis of broad-band multi-frequency sonic log data from a borehole penetrating water-saturated unconsolidated glacio-fluvial sediments. An inherent complication arising in the interpretation of the observed P-wave attenuation and velocity dispersion is, however, that the relative importance of WIFF at the various scales is unknown and difficult to unravel. An important generic result of our work is that the levels of attenuation and velocity dispersion due to the presence of mesoscopic heterogeneities in water-saturated unconsolidated clastic sediments are expected to be largely negligible. Conversely, WIFF at the macroscopic scale allows for explaining most of the considered data while refinements provided by including WIFF at the microscopic scale in the analysis are locally meaningful. Using a Monte-Carlo-type inversion approach, we compare the capability of the different models describing WIFF at the macroscopic and microscopic scales with regard to their ability to constrain the dry frame elastic moduli and the permeability as well as their local probability distribution. In the second part of this thesis, we explore the issue of determining the size of a representative elementary volume (REV) arising in the numerical upscaling procedures of effective seismic velocity dispersion and attenuation of heterogeneous media. To this end, we focus on a set of idealized synthetic rock samples characterized by the presence of layers, fractures or patchy saturation in the mesocopic scale range. These scenarios are highly pertinent because they tend to be associated with very high levels of velocity dispersion and attenuation caused by WIFF in the mesoscopic scale range. The problem of determining the REV size for generic heterogeneous rocks is extremely complex and entirely unexplored in the given context. In this pilot study, we have therefore focused on periodic media, which assures the inherent self- similarity of the considered samples regardless of their size and thus simplifies the problem to a systematic analysis of the dependence of the REV size on the applied boundary conditions in the numerical simulations. Our results demonstrate that boundary condition effects are absent for layered media and negligible in the presence of patchy saturation, thus resulting in minimum REV sizes. Conversely, strong boundary condition effects arise in the presence of a periodic distribution of finite-length fractures, thus leading to large REV sizes. In the third part of the thesis, we propose a novel effective poroelastic model for periodic media characterized by mesoscopic layering, which accounts for WIFF at both the macroscopic and mesoscopic scales as well as for the anisotropy associated with the layering. Correspondingly, this model correctly predicts the existence of the fast and slow P-waves as well as quasi and pure S-waves for any direction of wave propagation as long as the corresponding wavelengths are much larger than the layer thicknesses. The primary motivation for this work is that, for formations of intermediate to high permeability, such as, for example, unconsolidated sediments, clean sandstones, or fractured rocks, these two WIFF mechanisms may prevail at similar frequencies. This scenario, which can be expected rather common, cannot be accounted for by existing models for layered porous media. Comparisons of analytical solutions of the P- and S-wave phase velocities and inverse quality factors for wave propagation perpendicular to the layering with those obtained from numerical simulations based on a ID finite-element solution of the poroelastic equations of motion show very good agreement as long as the assumption of long wavelengths remains valid. A limitation of the proposed model is its inability to account for inertial effects in mesoscopic WIFF when both WIFF mechanisms prevail at similar frequencies. Our results do, however, also indicate that the associated error is likely to be relatively small, as, even at frequencies at which both inertial and scattering effects are expected to be at play, the proposed model provides a solution that is remarkably close to its numerical benchmark. -- Comprendre et pouvoir quantifier la dissipation d'énergie sismique qui se traduit par la dispersion et l'atténuation des vitesses dans les roches poreuses et saturées en fluide est un intérêt primordial pour obtenir des informations à propos des propriétés élastique et hydraulique des roches en question. De plus en plus d'études montrent que le déplacement relatif du fluide par rapport au solide induit par le passage de l'onde (wave induced fluid flow en anglais, dont on gardera ici l'abréviation largement utilisée, WIFF), représente le principal mécanisme physique qui régit ces phénomènes, pour la gamme des fréquences sismiques, sonique et jusqu'à l'ultrasonique. Ce mécanisme, qui prédomine aux échelles microscopique, mésoscopique et macroscopique, est lié à la dissipation d'énergie visqueuse résultant des gradients de pression de fluide et des effets inertiels induits par le passage du champ d'onde. Dans la première partie de cette thèse, nous présentons une analyse de données de diagraphie acoustique à large bande et multifréquences, issues d'un forage réalisé dans des sédiments glaciaux-fluviaux, non-consolidés et saturés en eau. La difficulté inhérente à l'interprétation de l'atténuation et de la dispersion des vitesses des ondes P observées, est que l'importance des WIFF aux différentes échelles est inconnue et difficile à quantifier. Notre étude montre que l'on peut négliger le taux d'atténuation et de dispersion des vitesses dû à la présence d'hétérogénéités à l'échelle mésoscopique dans des sédiments clastiques, non- consolidés et saturés en eau. A l'inverse, les WIFF à l'échelle macroscopique expliquent la plupart des données, tandis que les précisions apportées par les WIFF à l'échelle microscopique sont localement significatives. En utilisant une méthode d'inversion du type Monte-Carlo, nous avons comparé, pour les deux modèles WIFF aux échelles macroscopique et microscopique, leur capacité à contraindre les modules élastiques de la matrice sèche et la perméabilité ainsi que leur distribution de probabilité locale. Dans une seconde partie de cette thèse, nous cherchons une solution pour déterminer la dimension d'un volume élémentaire représentatif (noté VER). Cette problématique se pose dans les procédures numériques de changement d'échelle pour déterminer l'atténuation effective et la dispersion effective de la vitesse sismique dans un milieu hétérogène. Pour ce faire, nous nous concentrons sur un ensemble d'échantillons de roches synthétiques idéalisés incluant des strates, des fissures, ou une saturation partielle à l'échelle mésoscopique. Ces scénarios sont hautement pertinents, car ils sont associés à un taux très élevé d'atténuation et de dispersion des vitesses causé par les WIFF à l'échelle mésoscopique. L'enjeu de déterminer la dimension d'un VER pour une roche hétérogène est très complexe et encore inexploré dans le contexte actuel. Dans cette étude-pilote, nous nous focalisons sur des milieux périodiques, qui assurent l'autosimilarité des échantillons considérés indépendamment de leur taille. Ainsi, nous simplifions le problème à une analyse systématique de la dépendance de la dimension des VER aux conditions aux limites appliquées. Nos résultats indiquent que les effets des conditions aux limites sont absents pour un milieu stratifié, et négligeables pour un milieu à saturation partielle : cela résultant à des dimensions petites des VER. Au contraire, de forts effets des conditions aux limites apparaissent dans les milieux présentant une distribution périodique de fissures de taille finie : cela conduisant à de grandes dimensions des VER. Dans la troisième partie de cette thèse, nous proposons un nouveau modèle poro- élastique effectif, pour les milieux périodiques caractérisés par une stratification mésoscopique, qui prendra en compte les WIFF à la fois aux échelles mésoscopique et macroscopique, ainsi que l'anisotropie associée à ces strates. Ce modèle prédit alors avec exactitude l'existence des ondes P rapides et lentes ainsi que les quasis et pures ondes S, pour toutes les directions de propagation de l'onde, tant que la longueur d'onde correspondante est bien plus grande que l'épaisseur de la strate. L'intérêt principal de ce travail est que, pour les formations à perméabilité moyenne à élevée, comme, par exemple, les sédiments non- consolidés, les grès ou encore les roches fissurées, ces deux mécanismes d'WIFF peuvent avoir lieu à des fréquences similaires. Or, ce scénario, qui est assez commun, n'est pas décrit par les modèles existants pour les milieux poreux stratifiés. Les comparaisons des solutions analytiques des vitesses des ondes P et S et de l'atténuation de la propagation des ondes perpendiculaires à la stratification, avec les solutions obtenues à partir de simulations numériques en éléments finis, fondées sur une solution obtenue en 1D des équations poro- élastiques, montrent un très bon accord, tant que l'hypothèse des grandes longueurs d'onde reste valable. Il y a cependant une limitation de ce modèle qui est liée à son incapacité à prendre en compte les effets inertiels dans les WIFF mésoscopiques quand les deux mécanismes d'WIFF prédominent à des fréquences similaires. Néanmoins, nos résultats montrent aussi que l'erreur associée est relativement faible, même à des fréquences à laquelle sont attendus les deux effets d'inertie et de diffusion, indiquant que le modèle proposé fournit une solution qui est remarquablement proche de sa référence numérique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AimHigh intra-specific genetic diversity is necessary for species adaptation to novel environments under climate change, but species tracking suitable conditions are losing alleles through successive founder events during range shift. Here, we investigated the relationship between range shift since the Last Glacial Maximum (LGM) and extant population genetic diversity across multiple plant species to understand variability in species responses. LocationThe circumpolar Arctic and northern temperate alpine ranges. MethodsWe estimated the climatic niches of 30 cold-adapted plant species using range maps coupled with species distribution models and hindcasted species suitable areas to reconstructions of the mid-Holocene and LGM climates. We computed the species-specific migration distances from the species glacial refugia to their current distribution and correlated distances to extant genetic diversity in 1295 populations. Differential responses among species were related to life-history traits. ResultsWe found a negative association between inferred migration distances from refugia and genetic diversities in 25 species, but only 11 had statistically significant negative slopes. The relationships between inferred distance and population genetic diversity were steeper for insect-pollinated species than wind-pollinated species, but the difference among pollination system was marginally independent from phylogenetic autocorrelation. Main conclusionThe relationships between inferred migration distances and genetic diversities in 11 species, independent from current isolation, indicate that past range shifts were associated with a genetic bottleneck effect with an average of 21% loss of genetic diversity per 1000km(-1). In contrast, the absence of relationship in many species also indicates that the response is species specific and may be modulated by plant pollination strategies or result from more complex historical contingencies than those modelled here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Core body temperature is used to stage and guide the management of hypothermic patients, however obtaining accurate measurements of core temperature is challenging, especially in the pre-hospital context. The Swiss staging model for hypothermia uses clinical indicators to stage hypothermia. The proposed temperature range for clinical stage 1 is <35-32 °C (95-90 °F), for stage 2, <32-28 °C (<90-82 °F) for stage 3, <28-24 °C (<82-75 °F), and for stage 4 below 24 °C (75 °F). However, the evidence relating these temperature ranges to the clinical stages needs to be strengthened. METHODS: Medline was used to retrieve data on as many cases of accidental hypothermia (core body temperature <35 °C (95 °F)) as possible. Cases of therapeutic or neonatal hypothermia and those with confounders or insufficient data were excluded. To evaluate the Swiss staging model for hypothermia, we estimated the percentage of those patients who were correctly classified and compared the theoretical with the observed ranges of temperatures for each clinical stage. The number of rescue collapses was also recorded. RESULTS: We analysed 183 cases; the median temperature for the sample was 25.2 °C (IQR 22-28). 95 of the 183 patients (51.9 %; 95 % CI = 44.7 %-59.2 %) were correctly classified, while the temperature was overestimated in 36 patients (19.7 %; 95 % CI = 13.9 %-25.4 %). We observed important overlaps among the four stage groups with respect to core temperature, the lowest observed temperature being 28.1 °C for Stage 1, 22 °C for Stage 2, 19.3 °C for Stage 3, and 13.7 °C for stage 4. CONCLUSION: Predicting core body temperature using clinical indicators is a difficult task. Despite the inherent limitations of our study, it increases the strength of the evidence linking the clinical hypothermia stage to core temperature. Decreasing the thresholds of temperatures distinguishing the different stages would allow a reduction in the number of cases where body temperature is overestimated, avoiding some potentially negative consequences for the management of hypothermic patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The advent of simple and affordable tools for molecular identification of novel insect invaders and assessment of population diversity has changed the face of invasion biology in recent years. The widespread application of these tools has brought with it an emerging understanding that patterns in biogeography, introduction history and subsequent movement and spread of many invasive alien insects are far more complex than previously thought. We reviewed the literature and found that for a number of invasive insects, there is strong and growing evidence that multiple introductions, complex global movement, and population admixture in the invaded range are commonplace. Additionally, historical paradigms related to species and strain identities and origins of common invaders are in many cases being challenged. This has major consequences for our understanding of basic biology and ecology of invasive insects and impacts quarantine, management and biocontrol programs. In addition, we found that founder effects rarely limit fitness in invasive insects and may benefit populations (by purging harmful alleles or increasing additive genetic variance). Also, while phenotypic plasticity appears important post-establishment, genetic diversity in invasive insects is often higher than expected and increases over time via multiple introductions. Further, connectivity among disjunct regions of global invasive ranges is generally far higher than expected and is often asymmetric, with some populations contributing disproportionately to global spread. We argue that the role of connectivity in driving the ecology and evolution of introduced species with multiple invasive ranges has been historically underestimated and that such species are often best understood in a global context.