927 resultados para Revelation 22:3-4
Resumo:
Inositol polyphosphate 4-phosphatase (4-phosphatase) is an enzyme that catalyses the hydrolysis of the 4-position phosphate from phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P2]. In human platelets the formation of this phosphatidylinositol, by the actions of phosphatidylinositol 3-kinase (PI 3-kinase), correlates with irreversible platelet aggregation. We have shown previously that a phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase forms a complex with the p85 subunit of PI 3-kinase. In this study we investigated whether PI 3-kinase also forms a complex with the 4-phosphatase in human platelets. Immunoprecipitates of the p85 subunit of PI 3-kinase from human platelet cytosol contained 4-phosphatase enzyme activity and a 104-kDa polypeptide recognized by specific 4-phosphatase antibodies. Similarly, immunoprecipitates made using 4-phosphatase-specific antibodies contained PI 3-kinase enzyme activity and an 85-kDa polypeptide recognized by antibodies to the p85 adapter subunit of PI 3-kinase. After thrombin activation, the 4-phosphatase translocated to the actin cytoskeleton along with PI 3-kinase in an integrin- and aggregation-dependent manner. The majority of the PI 3-kinase/4-phosphatase complex (75%) remained in the cytosolic fraction. We propose that the complex formed between the two enzymes serves to localize the 4-phosphatase to sites of PtdIns(3,4)P2 production.
Resumo:
Several inositol-containing compounds play key roles in receptor-mediated cell signaling events. Here, we describe a function for a specific inositol polyphosphate, d-myo-inositol 1,4,5,6-tetrakisphosphate [Ins(1,4,5,6)P4], that is produced acutely in response to a receptor-independent process. Thus, infection of intestinal epithelial cells with the enteric pathogen Salmonella, but not with other invasive bacteria, induced a multifold increase in Ins(1,4,5,6)P4 levels. To define a specific function of Ins(1,4,5,6)P4, a membrane-permeant, hydrolyzable ester was used to deliver it to the intracellular compartment, where it antagonized epidermal growth factor (EGF)-induced inhibition of calcium-mediated chloride (Cl−) secretion (CaMCS) in intestinal epithelia. This EGF function is likely mediated through a phosphoinositide 3-kinase (PtdIns3K)-dependent mechanism because the EGF effects are abolished by wortmannin, and three different membrane-permeant esters of the PtdIns3K product phosphatidylinositol 3,4,5-trisphosphate mimicked the EGF effect on CaMCS. We further demonstrate that Ins(1,4,5,6)P4 antagonized EGF signaling downstream of PtdIns3K because Ins(1,4,5,6)P4 interfered with the PtdInsP3 effect on CaMCS without affecting PtdIns3K activity. Thus, elevation of Ins(1,4,5,6)P4 in Salmonella-infected epithelia may promote Cl− flux by antagonizing EGF inhibition mediated through PtdIns3K and PtdInsP3.
Resumo:
The existing database for paleointensity estimates of the ancient geomagnetic field contains more than 1500 data points collected through decades of effort. Despite the huge amount of work put into obtaining these data, there remains a strong bias in the age and global distribution of the data toward very young results from a few locations. Also, few of the data meet strict criteria for reliability and most are of unknown quality. In order to improve the age and spatial distribution of the paleointensity database, we have carried out paleointensity experiments on submarine basaltic glasses from a number of DSDP sites. Of particular interest are the sites that provide paleointensity data spanning the time period 0.3-5 Ma, a time of relatively few high quality published data points. Our new data are concordant with contemporaneous data from the published literature that meet minimum acceptance criteria, and the combined data set yields an average dipole moment of 5.49 +/- 2.36*10**22 Am**2. This average value is comparable to the average paleofield for the period 5-160 Ma (4.2 +/- 2.3*10**22 Am**2) (Juarez et al., 1998, doi:10.1038/29746) and is substantially less than the value of approximately 8*10**22 Am**2 often quoted for the last 5 Myr (e.g. McFadden and McElhinny (1982) J. Geomagn. Geoelectr. 34, 163-189; Goguitchaichvili et al., 1999, doi:10.1016/S0012-821X(99)00010-2).
Resumo:
To enhance the limited information available about the palaeo-ecological significance of calcareous dinoflagellates, we have studied their lateral distribution in surface sediments of the equatorial and south Atlantic between 13°N and 36°S. Calcareous dinoflagellate cysts appear to be widely distributed throughout the studied area. In the surface sediments, concentrations (cyst per gram dry sediment) of the vegetative stage Thoracosphaera heimii are generally higher than that of the (presumably) calcareous resting cysts. Distribution patterns in surface sediments of Orthopithonella granifera (Fütterer) Keupp and Versteegh, Rhabdothorax spp. Kamptner., Sphaerodinella albatrosiana (Kamptner) Keupp and Versteegh S. albatrosiana praratabulated, Sphaerodinella tuberosa var. 1 (Kamptner) Keupp and Versteegh and S. tuberosa var. 2 and the ratios between these species have been compared with temperature, salinity, density and stratification gradients in the upper water column. Rhabdothorax spp. is characteristically present in sediments of more temperate regions characterized by high seasonality. Dinoflagellates producing these cysts are able to tolerate high nutrient concentrations, and mixing of the water column. S. albatrosiana is abundant in regions characterized by high sea surface temperatures and oligotrophic surface water conditions. In contrast, the distribution of S. tuberosa var. 2 is negatively related to temperature. The other cyst species did not show a characteristic pattern in relation to the studied environmental gradients. The ratio of Sphaerodinella tuberosa var. 2 to Orthopithonella granifera can be used for reconstructing the presence of stratification in the upper 50 m of the water column, whereas the ratios of S. tuberosa var. 2 to Sphaerodinella albatrosiana and of O. granifera to Rhabdothorax spp. might be used for palaeotemperature reconstructions. Calcareous dinoflagellate cysts are abundant in oligotrophic areas and may be useful for the reconstruction of palaeoenvironmental conditions.
Resumo:
Modern erosion of the Himalaya, the world's largest mountain range, transfers huge dissolved and particulate loads to the ocean. It plays an important role in the long-term global carbon cycle, mostly through enhanced organic carbon burial in the Bengal Fan. To understand the role of past Himalayan erosion, the influence of changing climate and tectonic on erosion must be determined. Here we use a 12 Myr sedimentary record from the distal Bengal Fan (Deep Sea Drilling Project Site 218) to reconstruct the Mio-Pliocene history of Himalayan erosion. We use carbon stable isotopes (d13C) of bulk organic matter as paleo-environmental proxy and stratigraphic tool. Multi-isotopic - Sr, Nd and Os - data are used as proxies for the source of the sediments deposited in the Bengal Fan over time. d13C values of bulk organic matter shift dramatically towards less depleted values, revealing the widespread Late Miocene (ca. 7.4 Ma) expansion of C4 plants in the basin. Sr, Nd and Os isotopic compositions indicate a rather stable erosion pattern in the Himalaya range during the past 12 Myr. This supports the existence of a strong connection between the southern Tibetan plateau and the Bengal Fan. The tectonic evolution of the Himalaya range and Southern Tibet seems to have been unable to produce large re-organisation of the drainage system. Moreover, our data do not suggest a rapid change of the altitude of the southern Tibetan plateau during the past 12 Myr. Variations in Sr and Nd isotopic compositions around the late Miocene expansion of C4 plants are suggestive of a relative increase in the erosion of High Himalaya Crystalline rock (i.e. a simultaneous reduction of both Transhimalayan batholiths and Lesser Himalaya relative contributions). This could be related to an increase in aridity as suggested by the ecological and sedimentological changes at that time. A reversed trend in Sr and Nd isotopic compositions is observed at the Plio-Pleistocene transition that is likely related to higher precipitation and the development of glaciers in the Himalaya. These almost synchronous moderate changes in erosion pattern and climate changes during the late Miocene and at the Plio-Pleistocene transition support the notion of a dominant control of climate on Himalayan erosion during this time period. However, stable erosion regime during the Pleistocene is suggestive of a limited influence of the glacier development on Himalayan erosion.
Resumo:
Sponsored by Environmental Protection Agency, Region VIII.