861 resultados para Respondent Uncertainty
Resumo:
Strategic supply chain optimization (SCO) problems are often modelled as a two-stage optimization problem, in which the first-stage variables represent decisions on the development of the supply chain and the second-stage variables represent decisions on the operations of the supply chain. When uncertainty is explicitly considered, the problem becomes an intractable infinite-dimensional optimization problem, which is usually solved approximately via a scenario or a robust approach. This paper proposes a novel synergy of the scenario and robust approaches for strategic SCO under uncertainty. Two formulations are developed, namely, naïve robust scenario formulation and affinely adjustable robust scenario formulation. It is shown that both formulations can be reformulated into tractable deterministic optimization problems if the uncertainty is bounded with the infinity-norm, and the uncertain equality constraints can be reformulated into deterministic constraints without assumption of the uncertainty region. Case studies of a classical farm planning problem and an energy and bioproduct SCO problem demonstrate the advantages of the proposed formulations over the classical scenario formulation. The proposed formulations not only can generate solutions with guaranteed feasibility or indicate infeasibility of a problem, but also can achieve optimal expected economic performance with smaller numbers of scenarios.
Resumo:
This paper is concerned with strategic optimization of a typical industrial chemical supply chain, which involves a material purchase and transportation network, several manufacturing plants with on-site material and product inventories, a product transportation network and several regional markets. In order to address large uncertainties in customer demands at the different regional markets, a novel robust scenario formulation, which has been developed by the authors recently, is tailored and applied for the strategic optimization. Case study results show that the robust scenario formulation works well for this real industrial supply chain system, and it outperforms the deterministic formulation and the classical scenario-based stochastic programming formulation by generating better expected economic performance and solutions that are guaranteed to be feasible for all uncertainty realizations. The robust scenario problem exhibits a decomposable structure that can be taken advantage of by Benders decomposition for efficient solution, so the application of Benders decomposition to the solution of the strategic optimization is also discussed. The case study results show that Benders decomposition can reduce the solution time by almost an order of magnitude when the number of scenarios in the problem is large.
Resumo:
Climate change is expected to have wide-ranging impacts on urban areas and creates additional challenges for sustainable development. Urban areas are inextricably linked with climate change, as they are major contributors to it, while also being particularly vulnerable to its impacts. Climate change presents a new challenge to urban areas, not only because of the expected rises in temperature and sea-level, but also the current context of failure to fully address the institutional barriers preventing action to prepare for climate change, or feedbacks between urban systems and agents. Despite the importance of climate change, there are few cities in developing countries that are attempting to address these issues systematically as part of their governance and planning processes. While there is a growing literature on the risks and vulnerabilities related to climate change, as yet there is limited research on the development of institutional responses, the dissemination of relevant knowledge and evaluation of tools for practical planning responses by decision makers at the city level. This thesis questions the dominant assumptions about the capacity of institutions and potential of adaptive planning. It argues that achieving a balance between climate change impacts and local government decision-making capacity is a vital for successful adaptation to the impacts of climate change. Urban spatial planning and wider environmental planning not only play a major role in reducing/mitigating risks but also have a key role in adapting to uncertainty in over future risk. The research focuses on a single province - the biggest city in Vietnam - Ho Chi Minh City - as the principal case study to explore this argument, by examining the linkages between urban planning systems, the structures of governance, and climate change adaptation planning. In conclusion it proposes a specific framework to offer insights into some of the more practical considerations, and the approach emphasises the importance of vertical and horizontal coordination in governance and urban planning.
Resumo:
Skates and rays constitute the most speciose group of chondrichthyan fishes, yet are characterised by remarkable levels of morphological and ecological conservatism. They can be challenging to identify, which makes monitoring species compositions for fisheries management purposes problematic. Owing to their slow growth and low fecundity, skates are vulnerable to exploitation and species exhibiting endemism or limited ranges are considered to be the most at risk. The Madeira skate Raja maderensis is endemic and classified as ‘Data Deficient’ by the IUCN, yet its taxonomic distinctiveness from the morphologically similar and more wide-ranging thornback ray Raja clavata is unresolved. This study evaluated the sequence divergence of both the variable control region and cytochrome oxidase I ‘DNA barcode’ gene of the mitochondrial genome to elucidate the genetic differentiation of specimens identified as R. maderensis and R. clavata collected across much of their geographic ranges. Genetic evidence was insufficient to support the different species designations. However regardless of putative species identification, individuals occupying waters around the Azores and North African Seamounts represent an evolutionarily significant unit worthy of special consideration for conservation management.
Resumo:
Skates and rays constitute the most speciose group of chondrichthyan fishes, yet are characterised by remarkable levels of morphological and ecological conservatism. They can be challenging to identify, which makes monitoring species compositions for fisheries management purposes problematic. Owing to their slow growth and low fecundity, skates are vulnerable to exploitation and species exhibiting endemism or limited ranges are considered to be the most at risk. The Madeira skate Raja maderensis is endemic and classified as ‘Data Deficient’ by the IUCN, yet its taxonomic distinctiveness from the morphologically similar and more wide-ranging thornback ray Raja clavata is unresolved. This study evaluated the sequence divergence of both the variable control region and cytochrome oxidase I ‘DNA barcode’ gene of the mitochondrial genome to elucidate the genetic differentiation of specimens identified as R. maderensis and R. clavata collected across much of their geographic ranges. Genetic evidence was insufficient to support the different species designations. However regardless of putative species identification, individuals occupying waters around the Azores and North African Seamounts represent an evolutionarily significant unit worthy of special consideration for conservation management.
Resumo:
Body size is a key determinant of metabolic rate, but logistical constraints have led to a paucity of energetics measurements from large water-breathing animals. As a result, estimating energy requirements of large fish generally relies on extrapolation of metabolic rate from individuals of lower body mass using allometric relationships that are notoriously variable. Swim-tunnel respirometry is the ‘gold standard’ for measuring active metabolic rates in water-breathing animals, yet previous data are entirely derived from body masses <10 kg – at least one order of magnitude lower than the body masses of many top-order marine predators. Here, we describe the design and testing of a new method for measuring metabolic rates of large water-breathing animals: a c. 26 000 L seagoing ‘mega-flume’ swim-tunnel respirometer. We measured the swimming metabolic rate of a 2·1-m, 36-kg zebra shark Stegostoma fasciatum within this new mega-flume and compared the results to data we collected from other S. fasciatum (3·8–47·7 kg body mass) swimming in static respirometers and previously published measurements of active metabolic rate measurements from other shark species. The mega-flume performed well during initial tests, with intra- and interspecific comparisons suggesting accurate metabolic rate measurements can be obtained with this new tool. Inclusion of our data showed that the scaling exponent of active metabolic rate with mass for sharks ranging from 0·13 to 47·7 kg was 0·79; a similar value to previous estimates for resting metabolic rates in smaller fishes. We describe the operation and usefulness of this new method in the context of our current uncertainties surrounding energy requirements of large water-breathing animals. We also highlight the sensitivity of mass-extrapolated energetic estimates in large aquatic animals and discuss the consequences for predicting ecosystem impacts such as trophic cascades.
Resumo:
Body size is a key determinant of metabolic rate, but logistical constraints have led to a paucity of energetics measurements from large water-breathing animals. As a result, estimating energy requirements of large fish generally relies on extrapolation of metabolic rate from individuals of lower body mass using allometric relationships that are notoriously variable. Swim-tunnel respirometry is the ‘gold standard’ for measuring active metabolic rates in water-breathing animals, yet previous data are entirely derived from body masses <10 kg – at least one order of magnitude lower than the body masses of many top-order marine predators. Here, we describe the design and testing of a new method for measuring metabolic rates of large water-breathing animals: a c. 26 000 L seagoing ‘mega-flume’ swim-tunnel respirometer. We measured the swimming metabolic rate of a 2·1-m, 36-kg zebra shark Stegostoma fasciatum within this new mega-flume and compared the results to data we collected from other S. fasciatum (3·8–47·7 kg body mass) swimming in static respirometers and previously published measurements of active metabolic rate measurements from other shark species. The mega-flume performed well during initial tests, with intra- and interspecific comparisons suggesting accurate metabolic rate measurements can be obtained with this new tool. Inclusion of our data showed that the scaling exponent of active metabolic rate with mass for sharks ranging from 0·13 to 47·7 kg was 0·79; a similar value to previous estimates for resting metabolic rates in smaller fishes. We describe the operation and usefulness of this new method in the context of our current uncertainties surrounding energy requirements of large water-breathing animals. We also highlight the sensitivity of mass-extrapolated energetic estimates in large aquatic animals and discuss the consequences for predicting ecosystem impacts such as trophic cascades.
Resumo:
In a team of multiple agents, the pursuance of a common goal is a defining characteristic. Since agents may have different capabilities, and effects of actions may be uncertain, a common goal can generally only be achieved through a careful cooperation between the different agents. In this work, we propose a novel two-stage planner that combines online planning at both team level and individual level through a subgoal delegation scheme. The proposal brings the advantages of online planning approaches to the multi-agent setting. A number of modifications are made to a classical UCT approximate algorithm to (i) adapt it to the application domains considered, (ii) reduce the branching factor in the underlying search process, and (iii) effectively manage uncertain information of action effects by using information fusion mechanisms. The proposed online multi-agent planner reduces the cost of planning and decreases the temporal cost of reaching a goal, while significantly increasing the chance of success of achieving the common goal.
Resumo:
Auctions have become popular as means of allocating emissions permits in the emissions trading schemes developed around the world. Mostly, only a subset of the regulated polluters participate in these auctions along with speculators, creating a market with relatively few participants and, thus, incentive for strategic bidding. I characterize the bidding behavior of the polluters and the speculators, examining the effect of the latter on the profits of the former and on the auction outcome. It turns out that in addition to bidding for compliance, polluters also bid for speculation in the aftermarket. While the presence of the speculators forces the polluters to bid closer to their true valuations, it also creates a trade-off between increasing the revenue accrued to the regulator and reducing the profits of the auction-participating polluters. Nevertheless, the profits of the latter increase in the speculators' risk aversion.
Resumo:
[EN]The uncertainty associated with natural magnitudes and processes is conspicuous in water resources and groundwater evaluation. This uncertainty has an essential component and a part that can be reduced to some extent by increasing knowledge, improving monitoring coverage, continuous elaboration of data and accuracy and addressing the related economic and social aspects involved. Reducing uncertainty has a cost that may not be justified by the improvement that is obtainable, but that has to be known to make the right decisions. With this idea, this paper contributes general comments on the evaluation of groundwater resources in the semiarid Canary Islands and on some of the main sources of uncertainty, but a full treatment is not attempted, nor how to reduce it.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
This work provides a holistic investigation into the realm of feature modeling within software product lines. The work presented identifies limitations and challenges within the current feature modeling approaches. Those limitations include, but not limited to, the dearth of satisfactory cognitive presentation, inconveniency in scalable systems, inflexibility in adapting changes, nonexistence of predictability of models behavior, as well as the lack of probabilistic quantification of model’s implications and decision support for reasoning under uncertainty. The work in this thesis addresses these challenges by proposing a series of solutions. The first solution is the construction of a Bayesian Belief Feature Model, which is a novel modeling approach capable of quantifying the uncertainty measures in model parameters by a means of incorporating probabilistic modeling with a conventional modeling approach. The Bayesian Belief feature model presents a new enhanced feature modeling approach in terms of truth quantification and visual expressiveness. The second solution takes into consideration the unclear support for the reasoning under the uncertainty process, and the challenging constraint satisfaction problem in software product lines. This has been done through the development of a mathematical reasoner, which was designed to satisfy the model constraints by considering probability weight for all involved parameters and quantify the actual implications of the problem constraints. The developed Uncertain Constraint Satisfaction Problem approach has been tested and validated through a set of designated experiments. Profoundly stating, the main contributions of this thesis include the following: • Develop a framework for probabilistic graphical modeling to build the purported Bayesian belief feature model. • Extend the model to enhance visual expressiveness throughout the integration of colour degree variation; in which the colour varies with respect to the predefined probabilistic weights. • Enhance the constraints satisfaction problem by the uncertainty measuring of the parameters truth assumption. • Validate the developed approach against different experimental settings to determine its functionality and performance.