964 resultados para Resolution Electron-microscopy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aluminium alloy (AA) 2024-T3 is an important engineering material due to its widespread use in the aerospace industry. However, it is very prone to localized corrosion attack in chloride containing media, which has been mainly associated to the presence of coarse intermetallics (IMs) in its microstructure. In this work the corrosion behaviour of AA 2024-T3 in low concentrated chloride media was investigated using microscopy and electrochemical methods. TEM/EDS observations on non-corroded samples evidenced the heterogeneous composition within the IMs. In addition, SEM observations showed that intermetallics with the same nominal composition present different reactivity, and that both types of coarse IMs normally found in the alloy microstructure are prone to corrosion. Moreover, EDS analyses showed important compositional changes in corroded IMs, evidencing a selective dissolution of their more active constituents, and the onset of an intense oxygen peak, irrespective to the IM nature, indicating the formation of corrosion products. On the other hand, the results of the electrochemical investigations, in accordance with the SEM/EDS observations, evidenced that IMs corrosion dominates the electrochemical response of the alloy during the first hours of immersion in the test electrolyte. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the structure and morphology of silicon oxynitride films deposited by the PECVD technique were studied. The films were deposited under two different conditions: (a) SiOxNy with chemical compositions varying from SiO2 to Si3N4 via the control of a N2O + N-2 + SiH4 gas mixture, and (b) Si-rich SiOxNy films via the control of a N2O + SiH4 gas mixture. The analyses were performed using X-ray near edge spectroscopy (XANES) at the Si-K edge, transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS). For samples with chemical composition varying from SiO2 to Si3N4, the diffraction patterns obtained by TEM exhibited changes with the chemical composition, in agreement with the XANES results. For silicon-rich silicon oxynitride samples, the formation of a-Si clusters was observed and the possibility of obtaining Si nanocrystals after annealing depending on the composition and temperature was realized. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electric arc furnace (EAF) dust is a waste generated in the EAF during the steel production process. Among different wastes, EAF dust represents one of the most hazardous, since it contains heavy metals such as Zn, Fe, Cr, Cd and Pb. The goal of the present work is to characterise the waste through chemical analysis, particle size distribution, X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectroscopy detection and thermal analysis. The waste sample is composed essentially of spherical particles and has a very small particle size and the majority of the identified elements were Fe, Zn, Ca, Cr, Mn, K and Si. The XRD has presented compounds such as ZnO, ZnFe2O4, Fe2O3, MnO, SiO2, FeFe2O4 and MnAl2O4. According to the thermal analysis results, up to 1000 degrees C the total weight loss was similar to 5%. The results of waste characterisation are very important to these further investigations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nucleation of silver nanoparticles (NPs) in Tm(3+) doped PbO-GeO(2) (PGO) glass is reported. The influence of the heat treatment on the nucleation of silver NPs is studied by means of transmission electron microscopy and optical spectroscopy. Two heat treatment procedures were applied in order to compare their performance. Observation of infrared-to-visible frequency upconversion (UC) luminescence of Tm(3+) ions is reported and correlated with the heat-treatment procedure. Enhancement of the UC emission for samples heat treated during various time intervals is attributed to the increased local field in the vicinity of the NPs. Quenching of the UC signal was also observed and correlated with the growth of NPs amount and size.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present work we report the characterization of PbO-GeO(2) films containing silver nanoparticles (NPs). Radio Frequency (RF) co-sputtering was used for deposition of amorphous films on glass substrates. Targets of 60PbO-40GeO(2) (in wt%) and bulk silver with purity of 99.99% were RF-sputtered using 3.5 m Torr of argon. The concentration of silver and gold NPs in the films was controlled varying the RF-power applied to the targets (40-50W for the PbO-GeO(2) target; 6-8 W for the metallic target). The films obtained were annealed in air at different temperatures and various periods of time. Absorption measurements have shown strong NPs surface plasmon bands. Different widths and peak wavelengths were observed, indicating that size, shape and distribution of the silver NPs are dependent on the deposition process parameters and on the annealing of the samples. X-Ray Fluorescence and Transmission Electron Microscopy were also used to characterize the samples. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sucrose was used to prepare montmorillonite/carbon nanocomposites by calcination in a reduced atmosphere. The aim was to investigate the changes derived from varying the clay and sucrose content in the resulting material and to change the adsorption properties to evaluate its potential to be used in catalytic applications. X-ray diffraction patterns revealed the formation of an intercalated nanostructure composed of carbon-filled clay mineral layers, which was confirmed by the Fourier transform infrared spectra and thermogravimetry curves. Differences in composition and texture surface were detected by scanning electron microscopy images and were supported by viscosity measurements. These measurements were helpful in understanding why the sample prepared with the highest sucrose content presented the lowest gasoline and methylene blue adsorption results and why the highest adsorption properties were attributed to the sample with the highest clay content. Moreover, BET and BJH studies allowed understanding oleic acid catalytic conversion. Finally, a water flux simulation test was performed to determine the mechanical resistance in comparison to an activated carbon. It was found that the nanocomposites were more resistant, supporting their use in catalytic applications for a longer period of time. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bovine bone ash is the main raw material for fabrication of bone china, a special kind of porcelain that has visual and mechanical advantages when compared to usual porcelains. The properties of bone china are highly dependent on the characteristics of the bone ash. However, despite a relatively common product, the science behind formulations and accepted fabrication procedures for bone china is not completely understood and deserves attention for future processing optimizations. In this paper, the influence of the preparation steps (firing, milling, and washing of the bones) on the physicochemical properties of bone ash particles was investigated. Bone powders heat-treated at temperatures varying from 700 to 1000 degrees C were washed and milled. The obtained materials were analyzed in terms of particle size distribution, chemical composition, density, specific surface area, FTIR spectroscopy, dynamic electrophoretic mobility, crystalline phases and scanning electron microscopy. The results indicated that bone ash does not significantly change in terms of chemistry and physical features at calcination temperatures above 700 degrees C. After washing in special conditions, one could only observe hydroxyapatite in the diffraction pattern. By FTIR it was observed that carbonate seems to be mainly concentrated on the surface of the powders. Since this compound can influence in the dispersion stability, and consequently in the quality of the final bone china product, and considering optimal washing parameters based on the dynamic electrophoretic mobility results, we describe a procedure for surface cleaning. (c) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work investigates the effects of photodegradation on the environmental stress cracking resistance of polycarbonate (PC). Injection molded samples were exposed to the ultraviolet (UV) light for various times in the laboratory prior to solvent contact. The bars were then stressed with two different loads in a tensile testing machine under the presence of ethanol. During this period, the stress relaxation was monitored and, after unloading, the ultimate properties were evaluated. Complementary tests were done by size exclusion chromatography, UV-visible spectroscopy, scanning electron microscopy, and light microscopy. The results indicated that ethanol causes significant modification in PC, with extensive surface crazing as well as reduction in mechanical properties. The previous degraded samples showed a higher level of stress relaxation and a greater loss in tensile strength in comparison with the undegraded ones. The synergist action of photodegradation and stress cracking in PC may be a consequence of the chemical changes caused by oxidation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability of Phakopsora pachyrhizi to cause infection under conditions of discontinuous wetness was investigated. In in vitro experiments, droplets of a uredospore suspension were deposited onto the surface of polystyrene. After an initial wetting period of either 1, 2 or 4 h, the drops were dried for different time intervals and then the wetness was restored for 11, 10 or 8 h. Germination and appressorium formation were evaluated. In in vivo experiments, soybean plants were inoculated with a uredospore suspension. Leaf wetness was interrupted for 1, 3 or 6 h after initial wetting periods of 1, 2 or 4 h. Then, the wetting was re-established for 11, 10 or 8 h, respectively. Rust severity was evaluated 14 days after inoculation. The germination of the spores and the formation of the appressoria on the soybean leaves after different periods of wetness were also quantified in vivo by scanning electron microscopy. P. pachyrhizi showed a high infective capacity during short periods of time. An interruption of wetness after 1 h caused average reductions in germination from 56 to 75% and in appressorium formation from 84 to 96%. Rust severity was lower in all of the in vivo treatments with discontinuous wetness when compared to the control plants. Rust severity was zero when the interruption of wetness occurred 4 h after the initial wetting. Wetting interruptions after 1 and 2 h reduced the average rust severity by 83 and 77%, respectively. The germination of the uredospores on the soybean leaves occurred after 2 h of wetness, with a maximum germination appearing after 4 h of wetness. Wetness interruption affected mainly the spores that had initiated the germination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phytoplasmas are cell wall-less prokaryotes and phloem-inhabitants associated with diseases that affect several crops. Passion fruit is a tropical plant species cultivated in various Brazilian regions. Diseases are among the factors that may cause damage to this crop, and witches` broom is a very important one. This disease, associated with a phytoplasma, has been reported only in Brazil, where it was described in Rio de Janeiro and Pernambuco States at the beginning of the 1980`s. In 2005-2006, symptomatic plants Suspected of phytoplasma infection were sampled in areas located in Sao Paulo, Parana, Rio de Janeiro, Sergipe and Bahia. Amplification of DNA fragments of 1.2kb from nested PCR primed by the pairs 16mF2/mR1 and 16F2n/R2 revealed the presence of phytoplasma in the tissue of plants from all sampled regions. Molecular detection of the agent allowed confirmation of the diagnosis based on the symptomatology; demonstrated the strong association between diseased plants and a phytoplasma, confirming previous investigations based on electron microscopy;, and revealed the present occurrence of the agent in the States of Bahia, Parana, Rio de Janeiro, Sergipe, and Sao Paulo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fluoride (F) is an air pollutant that causes phytotoxicity. Besides the importance of this, losses of agricultural crops in the vicinity of F polluting industries in Brazil have been recently reported. Injuries caused to plant leaf cell structures by excess F are not well characterized. However, this may contribute to understanding the ways in which plant physiological and biochemical processes are altered. A study evaluated the effects of the atmospheric F on leaf characteristics and growth of young trees of sweet orange and coffee exposed to low (0.04 mol L(-1)) or high (0.16 mol L(-1)) doses of HF nebulized in closed chamber for 28 days plus a control treatment not exposed. Gladiolus and ryegrass were used as bioindicators in the experiment to monitor F exposure levels. Fluoride concentration and dry mass of leaves were evaluated. Leaf anatomy was observed under light and electron microscopy. High F concentrations (similar to 180 mg kg(-1)) were found in leaves of plants exposed at the highest dose of HF. Visual symptoms of F toxicity in leaves of citrus and coffee were observed. Analyses of plant tissue provided evidence that F caused degeneration of cell wall and cytoplasm and disorganization of bundle sheath, which were more evident in Gladiolus and coffee. Minor changes were observed for sweet orange and ryegrass. Increase on individual stomatal area was also marked for the Gladiolus and coffee, and which were characterized by occurrence of opened ostioles. The increased F absorption by leaves and changes at the structural and ultrastructural level of leaf tissues correlated with reduced plant growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

P>The aim of the work was to shed light into histological, physiological and molecular changes of Fagus sylvatica seedlings infected with the root pathogen Phytophthora citricola with the final goal to distinguish between local and systemic responses. Real-time quantitative PCR analysis proved that P. citricola was able to grow from infected roots into hypocotyl and epicotyl tissue of F. sylvatica seedlings. Light microscopy showed many collapsed parenchyma cells of the cortex without being penetrated by the pathogen. Hyphae were mainly growing intracellular in parenchyma and xylem tissue. Transmission electron microscopy displayed disintegration of xylem vessels and of parenchyma cells. Inhibition of water uptake of infected beech seedlings was positively correlated with the concentration of zoospores used in the experiment. In addition, a split root experiment indicated that invertases were possibly involved locally and systemically in the conversion of sucrose of P. citricola infected roots. During the growth of the pathogen in roots, a transient expression of the 1-aminocyclopropane-1-carboxylic acid (ACC)-oxidase gene was quantified in leaves which was detected in parallel with the first peak of a biphasic ethylene outburst. Additionally a systemic upregulation of aquaporin transcripts was mainly detected in leaves of beech seedlings infected with P. citricola.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cadmium (Cd) is a toxic heavy metal, which can cause severe damage to plant development. The aim of this work was to characterize ultrastructural changes induced by Cd in miniature tomato cultivar Micro-Tom (MT) mutants and their wild-type counterpart. Leaves of diageotropica (dgt) and Never ripe (Nr) tomato hormonal mutants and wild-type MT were analysed by light, scanning and transmission electron microscopy in order to characterize the structural changes caused by the exposure to 1 mM CdCl(2). The effect of Cd on leaf ultrastructure was observed most noticeably in the chloroplasts, which exhibited changes in organelle shape and internal organization, of the thylakoid membranes and stroma. Cd caused an increase in the intercellular spaces in Nr leaves, but a decrease in the intercellular spaces in dgt leaves, as well as a decrease in the size of mesophyll cells in the mutants. Roots of the tomato hormonal mutants, when analysed by light microscopy, exhibited alterations in root diameter and disintegration of the epidermis and the external layers of the cortex. A comparative analysis has allowed the identification of specific Cd-induced ultrastructural changes in wild-type tomato, the pattern of which was not always exhibited by the mutants. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Observations of cells of axenic peach palm (Bactris gasipaes) microplants by light microscopy revealed movements of small particles within the cells. The phenomenon was characterized initially as Brownian movement, but electron microscopy revealed the presence of an intracellular bacterial community in these plants. Microscopy observations revealed the particular shapes of bacterial cells colonizing inner tissues of analyzed plants. Applying a molecular characterization by polymerase chain reaction and denaturing gradient gel electrophoresis, it was revealed the existence of bacterial rRNA within the plants. Sequencing of the rRNA identified three different phylogenetic groups; two bands had a high degree of similarity to sequences from Moraxella sp. and Brevibacillus sp., and a third sequence was similar to a non-cultivated cyanobacterium. The presence of those endosymbionts, called bacteriosomes, in axenic peach palm microplants raises the question of whether these stable endosymbionts were acquired in the process of evolution and how could they benefit the process of plants micropropagation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chlorophyll a fluorescence parameters and transmission electron microscopy (TEM) were used to assess the stress conditions in water hyacinth along the Paraiba do Sul River (PSR), an important River in southeastern Brazil. The data were obtained at the end of the dry season of 2005 and at the end of the wet season of 2006. Changes in F-o and F-m parameters were observed as differentiated responses, depending on the season. Non-photochemical dissipation (qN and NPQ) from plants was greater in the most industrialized region of the PSR in both seasons. However, F-v/F-m for all samples ranged between 0.77 and 0.81, showing that high maximum quantum yield was maintained. Although the F-v/F-m suggests that the plants were exhibiting normal photochemical activities, ultrastructural changes in chloroplasts showed thylakoids disorganization. Plants from the most industrialized region showed non-stacking grana thylakoids disposition. In spite of these alterations, the membrane integrity was maintained, suggesting an adaptation to adjustment to adverse environmental conditions. (C) 2008 Elsevier B.V. All rights reserved.