960 resultados para Reservoir simulation. Steam injection. Injector well. Coupled


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

he abundance and distribution of isotopes throughout the Solar System can be used to constrain the number and type of nucleosynthetic events that contributed material to the early nebula. Barium is particularly well suited to quantifying the degree of isotope heterogeneity in the Solar System because it comprises seven stable isotopes that were synthesized by three different nucleosynthetic processes (s-, r-, and p-processes), all of which contributed material to the Solar System. There is also potential contribution to 135Ba from short-lived radioisotope 135Cs, conclusive evidence for which is yet to be reported. Four Allende (CV3) Ca,Al-rich inclusions (CAI 1, CAI 2, CAI 4, CAI 5) and one Allende dark inclusion (DI) were analyzed for Ba isotope variability. Two CAIs (CAI 2 and CAI 5) display 135Ba excesses that are not accompanied by 137Ba anomalies. Calcium–aluminum-rich inclusion 1 displays a 135Ba excess that is possibly coupled with a 137Ba excess, and the remaining refractory inclusions (CAI 2 and DI) have terrestrial Ba isotope compositions. These Ba isotope data are presented in conjunction with published whole rock Ba isotope data from individual Allende CAIs. The enrichment in 135Ba and absence of coupled 137Ba excesses in CAI 2 and CAI 5 is interpreted to indicate that the anomalies are not purely nucleosynthetic in origin but also contain contributions (16–48 ppm) from the decay of short-lived 135Cs. The majority of Allende CAIs studied to date may also have similar contributions from 135Cs on the basis of higher than expected 135Ba excesses if the Ba isotope anomalies were purely nucleosynthetic in origin. The 135Ba anomalies appear not to be coupled with superchondritic Cs/Ba, which may imply that the contribution to 135Ba did not occur via in situ decay of live 135Cs. However, it is feasible that the CAIs had a superchondritic Cs/Ba during decay of 135Cs, but Cs was subsequently removed from the system during aqueous alteration on the parent body. An alternative scenario is the potential existence of a transient high-temperature reservoir having superchondritic Cs/Ba in the early Solar System while 135Cs was extant, which enabled a radiogenic 135Ba signature to develop in some early condensates. The nucleosynthetic source of 135Cs can be determined by reconciling the predicted astrophysical 135Cs abundance with its measured abundance in meteorites. Further, the currently accepted initial 135Cs/133Cs of the Solar System, [135Cs/133Cs]0, may be underestimated because the spread of Cs/Ba among samples is small and the range of excess 135Ba is limited thus leading to inaccuracies when estimating [135Cs/133Cs]0. If the initial meteoritic abundance of 135Cs was indeed higher than is currently thought, the most probable stellar source of short-lived radioisotopes was a nearby core-collapse supernova and/or the Wolf–Rayet wind driven by its progenitor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One-dimensional dynamic computer simulation was employed to investigate the separation and migration order change of ketoconazole enantiomers at low pH in presence of increasing amounts of (2-hydroxypropyl)-β-cyclodextrin (OHP-β-CD). The 1:1 interaction of ketoconazole with the neutral cyclodextrin was simulated under real experimental conditions and by varying input parameters for complex mobilities and complexation constants. Simulation results obtained with experimentally determined apparent ionic mobilities, complex mobilities, and complexation constants were found to compare well with the calculated separation selectivity and experimental data. Simulation data revealed that the migration order of the ketoconazole enantiomers at low (OHP-β-CD) concentrations (i.e. below migration order inversion) is essentially determined by the difference in complexation constants and at high (OHP-β-CD) concentrations (i.e. above migration order inversion) by the difference in complex mobilities. Furthermore, simulations with complex mobilities set to zero provided data that mimic migration order and separation with the chiral selector being immobilized. For the studied CEC configuration, no migration order inversion is predicted and separations are shown to be quicker and electrophoretic transport reduced in comparison to migration in free solution. The presented data illustrate that dynamic computer simulation is a valuable tool to study electrokinetic migration and separations of enantiomers in presence of a complexing agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Al Shomou Silicilyte Member (Athel Formation) in the South Oman Salt Basin shares many of the characteristics of a light, tight-oil (LTO) reservoir: it is a prolifi c source rock mature for light oil, it produces light oil from a very tight matrix and reservoir, and hydraulic fracking technology is required to produce the oil. What is intriguing about the Al Shomou Silicilyte, and different from other LTO reservoirs, is its position related to the Precambrian/Cambrian Boundary (PCB) and the fact that it is a ‘laminated chert‘ rather than a shale. In an integrated diagenetic study we applied microstructural analyses (SEM, BSE) combined with state-of-the-art stable isotope and trace element analysis of the silicilyte matrix and fractures. Fluid inclusion microthermometry was applied to record the salinity and minimum trapping temperatures. The microstructural investigations reveal a fi ne lamination of the silicilyte matrix with a mean lamina thickness of ca. 20 μm consisting of predominantly organic matter-rich and fi nely crystalline quartz-rich layers, respectively. Authigenic, micron-sized idiomorphic quartz crystals are the main matrix components of the silicilyte. Other diagenetic phases are pyrite, apatite, dolomite, magnesite and barite cements. Porosity values based on neutron density logs and core plug data indicate porosity in the silicilyte ranges from less than 2% to almost to 40%. The majority of the pore space in the silicilyte is related to (primary) inter-crystalline pores, with locally important oversized secondary pores. Pore casts of the silica matrix show that pores are extremely irregular in three dimensions, and are generally interconnected by a complex web or meshwork of fi ne elongate pore throats. Mercury injection capillary data are in line with the microstructural observations suggesting two populations of pore throats, with an effective average modal diameter of 0.4 μm. The acquired geochemical data support the interpretation that the primary source of the silica is the ambient seawater rather than hydrothermal or biogenic. A maximum temperature of ca. 45°C for the formation of microcrystalline quartz in the silicilyte is good evidence that the lithifi cation and crystallization of quartz occurred in the fi rst 5 Ma after deposition. Several phases of brittle fracturing and mineralization occurred in response to salt tectonics during burial. The sequences of fracture-fi lling mineral phases (dolomite - layered chalcedony – quartz – apatite - magnesite I+II - barite – halite) indicates a complex fl uid evolution after silicilyte lithifi cation. Primary, all-liquid fl uid inclusions in the fracturefi lling quartz are good evidence of growth beginning at low temperatures, i.e. ≤ 50ºC. Continuous precipitation during increasing temperature and burial is documented by primary two-phase fl uid inclusions in quartz cements that show brines at 50°C and fi rst hydrocarbons at ca. 70°C. The absolute timing of each mineral phase can be constrained based on U-Pb geochronometry, and basin modelling. Secondary fl uid inclusions in quartz, magnesite and barite indicate reactivation of the fracture system after peak burial temperature during the major cooling event, i.e. uplift, between 450 and 310 Ma. A number of fi rst-order trends in porosity and reservoir-quality distribution are observed which are strongly related to the diagenetic and fl uid history of the reservoir: the early in-situ generation of hydrocarbons and overpressure development arrests diagenesis and preserves matrix porosity. Chemical compaction by pressure dissolution in the fl ank areas could be a valid hypothesis to explain the porosity variations in the silicilitye slabs resulting in lower porosity and poorer connectivity on the fl anks of the reservoir. Most of the hydrocarbon storage and production comes from intervals characterized by Amthor et al. 114488 preserved micropores, not hydrocarbon storage in a fracture system. The absence of oil expulsion results in present-day high oil saturations. The main diagenetic modifi cations of the silicilyte occurred and were completed relatively early in its history, i.e. before 300 Ma. An instrumental factor for preserving matrix porosity is the diffi culty for a given slab to evacuate all the fl uids (water and hydrocarbons), or in other words, the very good sealing capacity of the salt embedding the slab.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Efficiently performed basic life support (BLS) after cardiac arrest is proven to be effective. However, cardiopulmonary resuscitation (CPR) is strenuous and rescuers' performance declines rapidly over time. Audio-visual feedback devices reporting CPR quality may prevent this decline. We aimed to investigate the effect of various CPR feedback devices on CPR quality. METHODS In this open, prospective, randomised, controlled trial we compared three CPR feedback devices (PocketCPR, CPRmeter, iPhone app PocketCPR) with standard BLS without feedback in a simulated scenario. 240 trained medical students performed single rescuer BLS on a manikin for 8min. Effective compression (compressions with correct depth, pressure point and sufficient decompression) as well as compression rate, flow time fraction and ventilation parameters were compared between the four groups. RESULTS Study participants using the PocketCPR performed 17±19% effective compressions compared to 32±28% with CPRmeter, 25±27% with the iPhone app PocketCPR, and 35±30% applying standard BLS (PocketCPR vs. CPRmeter p=0.007, PocketCPR vs. standard BLS p=0.001, others: ns). PocketCPR and CPRmeter prevented a decline in effective compression over time, but overall performance in the PocketCPR group was considerably inferior to standard BLS. Compression depth and rate were within the range recommended in the guidelines in all groups. CONCLUSION While we found differences between the investigated CPR feedback devices, overall BLS quality was suboptimal in all groups. Surprisingly, effective compression was not improved by any CPR feedback device compared to standard BLS. All feedback devices caused substantial delay in starting CPR, which may worsen outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

East Africa’s Lake Victoria provides resources and services to millions of people on the lake’s shores and abroad. In particular, the lake’s fisheries are an important source of protein, employment, and international economic connections for the whole region. Nonetheless, stock dynamics are poorly understood and currently unpredictable. Furthermore, fishery dynamics are intricately connected to other supporting services of the lake as well as to lakeshore societies and economies. Much research has been carried out piecemeal on different aspects of Lake Victoria’s system; e.g., societies, biodiversity, fisheries, and eutrophication. However, to disentangle drivers and dynamics of change in this complex system, we need to put these pieces together and analyze the system as a whole. We did so by first building a qualitative model of the lake’s social-ecological system. We then investigated the model system through a qualitative loop analysis, and finally examined effects of changes on the system state and structure. The model and its contextual analysis allowed us to investigate system-wide chain reactions resulting from disturbances. Importantly, we built a tool that can be used to analyze the cascading effects of management options and establish the requirements for their success. We found that high connectedness of the system at the exploitation level, through fisheries having multiple target stocks, can increase the stocks’ vulnerability to exploitation but reduce society’s vulnerability to variability in individual stocks. We describe how there are multiple pathways to any change in the system, which makes it difficult to identify the root cause of changes but also broadens the management toolkit. Also, we illustrate how nutrient enrichment is not a self-regulating process, and that explicit management is necessary to halt or reverse eutrophication. This model is simple and usable to assess system-wide effects of management policies, and can serve as a paving stone for future quantitative analyses of system dynamics at local scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A benchmark problem set consisting of four problem levels was developed for the simulation of Cr isotope fractionation in 1D and 2D domains. The benchmark is based on a recent field study where Cr(VI) reduction and accompanying Cr isotope fractionation occurs abiotically by an aqueous reaction with dissolved Fe 2+ (Wanner et al., 2012., Appl. Geochem., 27, 644–662). The problem set includes simulation of the major processes affecting the Cr isotopic composition such as the dissolution of various Cr(VI) bearing minerals, fractionation during abiotic aqueous Cr(VI) reduction, and non-fractionating precipitation of Cr(III) as sparingly soluble Cr-hydroxide. Accuracy of the presented solutions was ensured by running the problems with four well-established reactive transport modeling codes: TOUGHREACT, MIN3P, CRUNCHFLOW, and FLOTRAN. Results were also compared with an analytical Rayleigh-type fractionation model. An additional constraint on the correctness of the results was obtained by comparing output from the problem levels simulating Cr isotope fractionation with the corresponding ones only simulating bulk concentrations. For all problem levels, model to model comparisons showed excellent agreement, suggesting that for the tested geochemical processes any code is capable of accurately simulating the fate of individual Cr isotopes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fatality risk caused by avalanches on road networks can be analysed using a long-term approach, resulting in a mean value of risk, and with emphasis on short-term fluctuations due to the temporal variability of both, the hazard potential and the damage potential. In this study, the approach for analysing the long-term fatality risk has been adapted by modelling the highly variable short-term risk. The emphasis was on the temporal variability of the damage potential and the related risk peaks. For defined hazard scenarios resulting from classified amounts of snow accumulation, the fatality risk was calculated by modelling the hazard potential and observing the traffic volume. The avalanche occurrence probability was calculated using a statistical relationship between new snow height and observed avalanche releases. The number of persons at risk was determined from the recorded traffic density. The method resulted in a value for the fatality risk within the observed time frame for the studied road segment. The long-term fatality risk due to snow avalanches as well as the short-term fatality risk was compared to the average fatality risk due to traffic accidents. The application of the method had shown that the long-term avalanche risk is lower than the fatality risk due to traffic accidents. The analyses of short-term avalanche-induced fatality risk provided risk peaks that were 50 times higher than the statistical accident risk. Apart from situations with high hazard level and high traffic density, risk peaks result from both, a high hazard level combined with a low traffic density and a high traffic density combined with a low hazard level. This provided evidence for the importance of the temporal variability of the damage potential for risk simulations on road networks. The assumed dependence of the risk calculation on the sum of precipitation within three days is a simplified model. Thus, further research is needed for an improved determination of the diurnal avalanche probability. Nevertheless, the presented approach may contribute as a conceptual step towards a risk-based decision-making in risk management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Main objective of the game is to increase the coping capacity of players and familiarise them with the Integrated Disaster Reduction Approach. The game is intended to prepare for and introduce the players to a subsequent Learning for Sustainability capacity building workshop for community leaders. The game represents a typical emergency situation resulting from a natural disaster. Before and after the event, adequate measures help to prevent or minimise potential damages. Once a disaster has occurred, concerted actions and immediate measures need to be taken to rescue as much as possible (human lives, livestock, material) and safeguard the village against further damage and losses. In the course of the game, each playing team can proof its knowledge on adequate measures that have to be taken in order to avoid or reduce losses related to natural disasters. Such measures relate to assessment and monitoring of risks, prevention and mitigation measures, preparedness and response as well as recovery and reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three extended families live around a lake. One family are rice farmers, the second family are vegetable farmers, and the third are a family of livestock herders. All of them depend on the use of lake water for their production, and all of them need large quantities of water. All are dependent on the use of the lake water to secure their livelihood. In the game, the families are represented by their councils of elders. Each of the councils has to find means and ways to increase production in order to keep up with the growth of its family and their demands. This puts more and more pressure on the water resources, increasing the risk of overuse. Conflicts over water are about to emerge between the families. Each council of elders must try to pursue its families interests, while at the same time preventing excessive pressure on the water resources. Once a council of elders is no longer able to meet the needs of its family, it is excluded from the game. Will the parties cooperate or compete? To face the challenge of balancing economic well-being, sustainable resource management, and individual and collective interests, the three parties have a set of options for action at hand. These include power play to safeguard their own interests, communication and cooperation to negotiate with neighbours, and searching for alternatives to reduce pressure on existing water resources. During the game the players can experience how tensions may arise, increase and finally escalate. They realise what impact power play has and how alliances form, and the importance of trust-building measures, consensus and cooperation. From the insights gained, important conflict prevention and mitigation measures are derived in a debriefing session. The game is facilitated by a moderator, and lasts for 3-4 hours. Aim of the game: Each family pursues the objective of serving its own interests and securing its position through appropriate strategies and skilful negotiation, while at the same time optimising use of the water resources in a way that prevents their degradation. The end of the game is open. While the game may end by one or two families dropping out because they can no longer secure their subsistence, it is also possible that the three families succeed in creating a situation that allows them to meet their own needs as well as the requirements for sustainable water use in the long term. Learning objectives The game demonstrates how tension builds up, increases, and finally escalates; it shows how power positions work and alliances are formed; and it enables the players to experience the great significance of mutual agreement and cooperation. During the game and particularly during the debriefing and evaluation session it is important to link experiences made during the game to the players’ real-life experiences, and to discuss these links in the group. The resulting insights will provide a basis for deducing important conflict prevention and transformation measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, there is little knowledge on the attitude state of decommissioned intact objects in Earth orbit. Observational means have advanced in the past years, but are still limited with respect to an accurate estimate of motion vector orientations and magnitude. Especially for the preparation of Active Debris Removal (ADR) missions as planned by ESA’s Clean Space initiative or contingency scenarios for ESA spacecraft like ENVISAT, such knowledge is needed. ESA's “Debris Attitude Motion Measurements and Modelling” project (ESA Contract No. 40000112447), led by the Astronomical Institute of the University of Bern (AIUB), addresses this problem. The goal of the project is to achieve a good understanding of the attitude evolution and the considerable internal and external effects which occur. To characterize the attitude state of selected targets in LEO and GTO, multiple observation methods are combined. Optical observations are carried out by AIUB, Satellite Laser Ranging (SLR) is performed by the Space Research Institute of the Austrian Academy of Sciences (IWF) and radar measurements and signal level determination are provided by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). The In-Orbit Tumbling Analysis tool (ιOTA) is a prototype software, currently in development by Hyperschall Technologie Göttingen GmbH (HTG) within the framework of the project. ιOTA will be a highly modular software tool to perform short-(days), medium-(months) and long-term (years) propagation of the orbit and attitude motion (six degrees-of-freedom) of spacecraft in Earth orbit. The simulation takes into account all relevant acting forces and torques, including aerodynamic drag, solar radiation pressure, gravitational influences of Earth, Sun and Moon, eddy current damping, impulse and momentum transfer from space debris or micro meteoroid impact, as well as the optional definition of particular spacecraft specific influences like tank sloshing, reaction wheel behaviour, magnetic torquer activity and thruster firing. The purpose of ιOTA is to provide high accuracy short-term simulations to support observers and potential ADR missions, as well as medium-and long-term simulations to study the significance of the particular internal and external influences on the attitude, especially damping factors and momentum transfer. The simulation will also enable the investigation of the altitude dependency of the particular external influences. ιOTA's post-processing modules will generate synthetic measurements for observers and for software validation. The validation of the software will be done by cross-calibration with observations and measurements acquired by the project partners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cometary coma is a unique phenomenon in the solar system being a planetary atmosphere influenced by little or no gravity. As a comet approaches the sun, the water vapor with some fraction of other gases sublimate, generating a cloud of gas, ice and other refractory materials (rocky and organic dust) ejected from the surface of the nucleus. Sublimating gas molecules undergo frequent collisions and photochemical processes in the near‐nucleus region. Owing to its negligible gravity, comets produce a large and highly variable extensive dusty coma with a size much larger than the characteristic size of the cometary nucleus. The Rosetta spacecraft is en route to comet 67P/Churyumov‐Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. Both, interpretation of measurements and safety consideration of the spacecraft require modeling of the comet’s dusty gas environment. In this work we present results of a numerical study of multispecies gaseous and electrically charged dust environment of comet Chyuryumov‐Gerasimenko. Both, gas and dust phases of the coma are simulated kinetically. Photolytic reactions are taken into account. Parameters of the ambient plasma as well as the distribution of electric/magnetic fields are obtained from an MHD simulation [1] of the coma connected to the solar wind. Trajectories of ions and electrically charged dust grains are simulated by accounting for the Lorentz force and the nucleus gravity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapidly growing technical developments and working time constraints call for changes in trainee formation. In reality, trainees spend fewer hours in the hospital and face more difficulties in acquiring the required qualifications in order to work independently as a specialist. Simulation-based training is a potential solution. It offers the possibility to learn basic technical skills, repeatedly perform key steps in procedures and simulate challenging scenarios in team training. Patients are not at risk and learning curves can be shortened. Advanced learners are able to train rare complications. Senior faculty member's presence is key to assess and debrief effective simulation training. In the field of vascular access surgery, simulation models are available for open as well as endovascular procedures. In this narrative review, we describe the theory of simulation, present simulation models in vascular (access) surgery, discuss the possible benefits for patient safety and the difficulties of implementing simulation in training.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of pressure-driven laminar flow has an impact on zone and boundary dispersion in open tubular CE. The GENTRANS dynamic simulator for electrophoresis was extended with Taylor-Aris diffusivity which accounts for dispersion due to the parabolic flow profile associated with pressure-driven flow. Effective diffusivity of analyte and system zones as functions of the capillary diameter and the amount of flow in comparison to molecular diffusion alone were studied for configurations with concomitant action of imposed hydrodynamic flow and electroosmosis. For selected examples under realistic experimental conditions, simulation data are compared with those monitored experimentally using modular CE setups featuring both capacitively coupled contactless conductivity and UV absorbance detection along a 50 μm id fused-silica capillary of 90 cm total length. The data presented indicate that inclusion of flow profile based Taylor-Aris diffusivity provides realistic simulation data for analyte and system peaks, particularly those monitored in CE with conductivity detection.