927 resultados para Renaud, de Châtillon, prince of Antioch, d. 1187.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finding vertex-minimal triangulations of closed manifolds is a very difficult problem. Except for spheres and two series of manifolds, vertex-minimal triangulations are known for only few manifolds of dimension more than 2 (see the table given at the end of Section 5). In this article, we present a brief survey on the works done in last 30 years on the following:(i) Finding the minimal number of vertices required to triangulate a given pl manifold. (ii) Given positive integers n and d, construction of n-vertex triangulations of different d-dimensional pl manifolds. (iii) Classifications of all the triangulations of a given pl manifold with same number of vertices.In Section 1, we have given all the definitions which are required for the remaining part of this article. A reader can start from Section 2 and come back to Section 1 as and when required. In Section 2, we have presented a very brief history of triangulations of manifolds. In Section 3,we have presented examples of several vertex-minimal triangulations. In Section 4, we have presented some interesting results on triangulations of manifolds. In particular, we have stated the Lower Bound Theorem and the Upper Bound Theorem. In Section 5, we have stated several results on minimal triangulations without proofs. Proofs are available in the references mentioned there. We have also presented some open problems/conjectures in Sections 3 and 5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current paper suggests a new procedure for designing helmets for head impact protection for users such as motorcycle riders. According to the approach followed here, a helmet is mounted on a featureless Hybrid 3 headform that is used in assessing vehicles for compliance to the FMVSS 201 regulation in the USA for upper interior head impact safety. The requirement adopted in the latter standard, i.e. not exceeding a threshold HIC(d) limit of 1000, is applied in the present study as a likely criterion for adjudging the efficacy of helmets. An impact velocity of 6 m/s (13.5 mph) for the helmet-headform system striking a rigid target can probably be acceptable for ascertaining a helmet's effectiveness as a countermeasure for minimizing the risk of severe head injury. The proposed procedure is demonstrated with the help of a validated LS-DYNA model of a featureless Hybrid 3 headform in conjunction with a helmet model comprising an outer polypropylene shell to the inner surface of which is bonded a protective polyurethane foam padding of a given thickness. Based on simulation results of impact on a rigid surface, it appears that a minimum foam padding thickness of 40 mm is necessary for obtaining an acceptable value of HIC(d).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to propose a numerically integrated modified virtual crack closure integral (NI-MVCCI) technique for fracture analysis of cracked plate panels. NI-MVCCI technique is generalized one and the expressions for computing the strain energy release rate (SERR) are independent of the finite element employed. NI-MVCCI technique has been demonstrated for 4-noded, 8-noded (regular and quarter-point) and 9-noded isoparametric finite elements. Numerical studies on fracture analysis of 2-D crack (mode-I and mode-II) problems have been conducted employing these elements. SERR and stress intensity factors (SIF) have been computed for these problems and found to be in good agreement with the respective analytical solutions available in the literature. The appropriate Gauss numerical integration order to be employed for each of these elements for accurate computation of SERR and SIF has been recommended based on the studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we report resonance Raman scattering from graphite covering excitation energies in the range 2.4 eV to 6 eV. The Raman excitation profile shows a maximum at 4.94 eV (lambda = 251nm) for the G - band (1582 cm(-1)). The D-band at similar to 1350 cm(-1), attributed to disorder activated Raman scattering, does not show up in Raman spectra recorded with excitation wavelengths smaller than 257.3 nm, revealing that the resonance enhancements of the G and D-modes are widely different. Earlier Raman measurements in carbon materials have also revealed a very large and unusual dependence of the D - mode frequency on excitation laser wavelength. This phenomenon is also observed in carbon nanotubes. In this paper we show for the first time that the above unusual dependence arises from the disorder - induced double resonance mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The single-crystal X-ray structure of a cation-templated manganese-oxalate coordination polymer [NH(C2H5)(3)][Mn-2(ox)(3)]center dot(5H(2)O)] (1) is reported. In 1, triethylammonium cation is entrapped between the cavities of 2-D honeycomb layers constructed by oxalate and water. The acyclic tetrameric water clusters and discrete water assemble the parallel 2-D honeycomb oxalate layers via an intricate array of hydrogen bonds into an overall 3-D network. The magnetic susceptibility, with and without the water cluster, are reported with infrared and EPR studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enantiospecific total synthesis of the crinipellin mentioned in the title was accomplished. In the present synthesis cyclopentane ring in campholenaldehyde was identified as the B-ring, two intramolecular rhodium carbenoid CH insertion reactions were employed for the construction of the A and C rings, and an intramolecular Michael addition reaction was utilized for the construction of the D-ring of crinipellin. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethylene gas is burnt to generate soot which is collected thermophoretically from different locations of the flame. Tribological performance of the collected soot in hexadecane suspension is compared with that of carbon black and diesel soot. The soots are analysed to yield a range of mechanical properties, physical structures and chemistry. The paper correlates these property variations with the corresponding variations in friction and wear when the soot suspended in hexadecane is used to lubricate a steel on steel sliding interaction. The particles are dispersed in hexadecane by a non-ionic surfactant, poly-isobutylene succinimide (PIBS), which is mono-functional with no free amine group. The grafting of the surfactant on the soot particles is found to have a profound effect on the dispersion of the soot, in general, while, between the different soot types, the tribology is differentiated by the physical structure and chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We revisit the extraction of alpha(s)(M-tau(2)) from the QCD perturbative corrections to the hadronic tau branching ratio, using an improved fixed-order perturbation theory based on the explicit summation of all renormalization-group accessible logarithms, proposed some time ago in the literature. In this approach, the powers of the coupling in the expansion of the QCD Adler function are multiplied by a set of functions D-n, which depend themselves on the coupling and can be written in a closed form by iteratively solving a sequence of differential equations. We find that the new expansion has an improved behavior in the complex energy plane compared to that of the standard fixed-order perturbation theory (FOPT), and is similar but not identical to the contour-improved perturbation theory (CIPT). With five terms in the perturbative expansion we obtain in the (MS) over bar scheme alpha(s)(M-tau(2)) = 0.338 +/- 0.010, using as input a precise value for the perturbative contribution to the hadronic width of the tau lepton reported recently in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses on the formulation of an asymptotically correct theory for symmetric composite honeycomb sandwich plate structures. In these panels, transverse stresses tremendously influence design. The conventional 2-D finite elements cannot predict the thickness-wise distributions of transverse shear or normal stresses and 3-D displacements. Unfortunately, the use of the more accurate three-dimensional finite elements is computationally prohibitive. The development of the present theory is based on the Variational Asymptotic Method (VAM). Its unique features are the identification and utilization of additional small parameters associated with the anisotropy and non-homogeneity of composite sandwich plate structures. These parameters are ratios of smallness of the thickness of both facial layers to that of the core and smallness of 3-D stiffness coefficients of the core to that of the face sheets. Finally, anisotropy in the core and face sheets is addressed by the small parameters within the 3-D stiffness matrices. Numerical results are illustrated for several sample problems. The 3-D responses recovered using VAM-based model are obtained in a much more computationally efficient manner than, and are in agreement with, those of available 3-D elasticity solutions and 3-D FE solutions of MSC NASTRAN. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leaves and leaf sheath of banana and areca husk (Areca catechu) constitute an important component of urban solid waste (USW) in India which are difficult to degrade under normal windrow composting conditions. A successful method of anaerobic digestion built around the fermentation properties of these feedstock has been evolved which uses no moving parts, pretreatment or energy input while enabling recovery of four products: fiber, biogas, compost and pest repellent. An SRT of 27 d and 35 d was found to be optimum for fiber recovery for banana leaf and areca husk, respectively. Banana leaf showed a degradation pattern different from other leaves with slow pectin-1 degradation (80%) and 40% lignin removal in 27 d SRT. Areca husk however, showed a degradation pattern similar to other plant biomass. Mass recovery levels for banana leaf were fiber-20%, biogas-70% (400 ml/g TS) and compost-10%. For areca husk recovery was fiber-50%, biogas-45% (250 ml/g TS) and compost-5%. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ electrochemical polymerization of aniline in a Langmuir trough under applied surface pressure assists in the preferential orientation of polyaniline (PANI) in planar polaronic structure. Exfoliated graphene oxide (EGO) spread on water surface is used to bring anilinium cations present in the subphase to air-water interface through electrostatic interactions. Subsequent electrochemical polymerization of aniline under applied surface pressure in the Schaefer mode results in EGO/PANT composite with PANT in planar polaronic form. The orientation of PANI is confirmed by electrochemical and Raman spectroscopic studies. This technique opens up possibilities of 2-D polymerization at the air-water interface. Electrochemical sensing of hydrogen peroxide is used to differentiate the activity of planar and coiled forms of PANI toward electrocatalytic reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the shape parameters of the € scalar and vector form factors using as input dispersion relations and unitarity for the moments of suitable heavy-light correlators evaluated with Operator Product Expansions, including O(α 2 s) terms in perturbative QCD. For the scalar form factor, a low energy theorem and phase information on the unitarity cut are implemented to further constrain the shape parameters. We finally determine points on the real axis and isolate regions in the complex energy plane where zeros of the form factors are excluded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work intends to demonstrate the importance of a geometrically nonlinear cross-sectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. All component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically non-linear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and non-linear 1-D analyses along the three beam reference curves. For the thin rectangular cross-sections considered here, the 2-D cross-sectional non-linearity is also overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the non-linear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the non-linear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict multi-body dynamic responses more quickly and accurately than would otherwise be possible. The analysis methodology can be viewed as a three-step procedure: First, the cross-sectional properties of each bar of the mechanism is determined analytically based on an asymptotic procedure, starting from Classical Laminated Shell Theory (CLST) and taking advantage of its thin strip geometry. Second, the dynamic response of the non-linear, flexible four-bar mechanism is simulated by treating each bar as a 1-D beam, discretized using finite elements, and employing energy-preserving and -decaying time integration schemes for unconditional stability. Finally, local 3-D deformations and stresses in the entire system are recovered, based on the 1-D responses predicted in the previous step. With the model, tools and procedure in place, we identify and investigate a few four-bar mechanism problems where the cross-sectional non-linearities are significant in predicting better and critical system dynamic characteristics. This is carried out by varying stacking sequences (i.e. the arrangement of ply orientations within a laminate) and material properties, and speculating on the dominating diagonal and coupling terms in the closed-form non-linear beam stiffness matrix. A numerical example is presented which illustrates the importance of 2-D cross-sectional non-linearities and the behavior of the system is also observed by using commercial software (I-DEAS + NASTRAN + ADAMS). (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Design optimisation of a helicopter rotor blade is performed. The objective is to reduce helicopter vibration and constraints are put on frequencies and aeroelastic stability. The ply angles of the D-spar and skin of the composite rotor blade with NACA 0015 aerofoil section are considered as design variables. Polynomial response surfaces and space filling experimental designs are used to generate surrogate models of the objective function with respect to cross-section properties. The stacking sequence corresponding to the optimal cross-section is found using a real-coded genetic algorithm. Ply angle discretisation of 1 degrees, 15 degrees, 30 degrees and 45 degrees are used. The mean value of the objective function is used to find the optimal blade designs and the resulting designs are tested for variance. The optimal designs show a vibration reduction of 26% to 33% from the baseline design. A substantial reduction in vibration and an aeroelastically stable blade is obtained even after accounting for composite material uncertainty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims at dimensional reduction of non-linear isotropic hyperelastic plates in an asymptotically accurate manner. The problem is both geometrically and materially non-linear. The geometric non-linearity is handled by allowing for finite deformations and generalized warping while the material non-linearity is incorporated through hyperelastic material model. The development, based on the Variational Asymptotic Method (VAM) with moderate strains and very small thickness to shortest wavelength of the deformation along the plate reference surface as small parameters, begins with three-dimensional (3-D) non-linear elasticity and mathematically splits the analysis into a one-dimensional (1-D) through-the-thickness analysis and a two-dimensional (2-D) plate analysis. Major contributions of this paper are derivation of closed-form analytical expressions for warping functions and stiffness coefficients and a set of recovery relations to express approximately the 3-D displacement, strain and stress fields. Consistent with the 2-D non-linear constitutive laws, 2-D plate theory and corresponding finite element program have been developed. Validation of present theory is carried out with a standard test case and the results match well. Distributions of 3-D results are provided for another test case. (c) 2012 Elsevier Ltd. All rights reserved.