992 resultados para Reliability simulation
Resumo:
Resilience is the property of a system to remain trustworthy despite changes. Changes of a different nature, whether due to failures of system components or varying operational conditions, significantly increase the complexity of system development. Therefore, advanced development technologies are required to build robust and flexible system architectures capable of adapting to such changes. Moreover, powerful quantitative techniques are needed to assess the impact of these changes on various system characteristics. Architectural flexibility is achieved by embedding into the system design the mechanisms for identifying changes and reacting on them. Hence a resilient system should have both advanced monitoring and error detection capabilities to recognise changes as well as sophisticated reconfiguration mechanisms to adapt to them. The aim of such reconfiguration is to ensure that the system stays operational, i.e., remains capable of achieving its goals. Design, verification and assessment of the system reconfiguration mechanisms is a challenging and error prone engineering task. In this thesis, we propose and validate a formal framework for development and assessment of resilient systems. Such a framework provides us with the means to specify and verify complex component interactions, model their cooperative behaviour in achieving system goals, and analyse the chosen reconfiguration strategies. Due to the variety of properties to be analysed, such a framework should have an integrated nature. To ensure the system functional correctness, it should rely on formal modelling and verification, while, to assess the impact of changes on such properties as performance and reliability, it should be combined with quantitative analysis. To ensure scalability of the proposed framework, we choose Event-B as the basis for reasoning about functional correctness. Event-B is a statebased formal approach that promotes the correct-by-construction development paradigm and formal verification by theorem proving. Event-B has a mature industrial-strength tool support { the Rodin platform. Proof-based verification as well as the reliance on abstraction and decomposition adopted in Event-B provides the designers with a powerful support for the development of complex systems. Moreover, the top-down system development by refinement allows the developers to explicitly express and verify critical system-level properties. Besides ensuring functional correctness, to achieve resilience we also need to analyse a number of non-functional characteristics, such as reliability and performance. Therefore, in this thesis we also demonstrate how formal development in Event-B can be combined with quantitative analysis. Namely, we experiment with integration of such techniques as probabilistic model checking in PRISM and discrete-event simulation in SimPy with formal development in Event-B. Such an integration allows us to assess how changes and di erent recon guration strategies a ect the overall system resilience. The approach proposed in this thesis is validated by a number of case studies from such areas as robotics, space, healthcare and cloud domain.
Resumo:
This study evaluated the influence of packaging and labeling attributes of sugarcane spirit on consumers' behavior by applying the results of conjoint analysis in sugarcane spirit market share simulation. Firstly, a conjoint analysis was performed aiming to estimate the part-worths of each consumer for some sugarcane spirit packaging and labeling attributes. These part-worths were used in the market share simulation using the maximum utility model. It was observed that some packaging and labeling attributes affected consumer's purchase intention and that most consumers showed a similar preference pattern regarding these attributes. These consumers showed preference for the Seleta brand, which was bottled in 700 mL clear glass bottles with a metal screw cap that bore a label illustration unrelated to sugarcane spirit production process and had the information "aged 36 months in oak barrels". This study also showed that conjoint analysis and the use of its results in the market share simulation proved important tools to better understand consumer behavior towards intention to purchase sugarcane spirit.
Resumo:
The aim of this work was to calibrate the material properties including strength and strain values for different material zones of ultra-high strength steel (UHSS) welded joints under monotonic static loading. The UHSS is heat sensitive and softens by heat due to welding, the affected zone is heat affected zone (HAZ). In this regard, cylindrical specimens were cut out from welded joints of Strenx® 960 MC and Strenx® Tube 960 MH, were examined by tensile test. The hardness values of specimens’ cross section were measured. Using correlations between hardness and strength, initial material properties were obtained. The same size specimen with different zones of material same as real specimen were created and defined in finite element method (FEM) software with commercial brand Abaqus 6.14-1. The loading and boundary conditions were defined considering tensile test values. Using initial material properties made of hardness-strength correlations (true stress-strain values) as Abaqus main input, FEM is utilized to simulate the tensile test process. By comparing FEM Abaqus results with measured results of tensile test, initial material properties will be revised and reused as software input to be fully calibrated in such a way that FEM results and tensile test results deviate minimum. Two type of different S960 were used including 960 MC plates, and structural hollow section 960 MH X-joint. The joint is welded by BöhlerTM X96 filler material. In welded joints, typically the following zones appear: Weld (WEL), Heat affected zone (HAZ) coarse grained (HCG) and fine grained (HFG), annealed zone, and base material (BaM). Results showed that: The HAZ zone is softened due to heat input while welding. For all the specimens, the softened zone’s strength is decreased and makes it a weakest zone where fracture happens while loading. Stress concentration of a notched specimen can represent the properties of notched zone. The load-displacement diagram from FEM modeling matches with the experiments by the calibrated material properties by compromising two correlations of hardness and strength.
Resumo:
The non-idealities in a rotor-bearing system may cause undesirable subcritical superharmonic resonances that occur when the rotating speed of the rotor is a fraction of the natural frequency of the system. These resonances arise partly from the non-idealities of the bearings. This study introduces a novel simulation approach that can be used to study the superharmonic vibrations of rotor-bearing systems. The superharmonic vibrations of complex rotor-bearing systems can be studied in an accurate manner by combining a detailed rotor and bearing model in a multibody simulation approach. The research looks at the theoretical background of multibody formulations that can be used in the dynamic analysis of flexible rotors. The multibody formulations currently in use are suitable for linear deformation analysis only. However, nonlinear formulation may arise in high-speed rotor dynamics applications due to the cenrrifugal stiffening effect. For this reason, finite element formulations that can describe nonlinear deformation are also introduced in this work. The description of the elastic forces in the absolute nodal coordinate formulation is studied and improved. A ball bearing model that includes localized and distributed defects is developed in this study. This bearing model could be used in rotor dynamics or multibody code as an interface elements between the rotor and the supporting structure. The model includes descriptions of the nonlinear Hertzian contact deformation and the elastohydrodynamic fluid film. The simulation approaches and models developed here are applied in the analysis of two example rotor-bearing systems. The first example is an electric motor supported by two ball bearings and the second is a roller test rig that consists of the tube roll of a paper machine supported by a hard-bearing-type balanceing machine. The simulation results are compared to the results available in literature as well as to those obtained by measuring the existing structure. In both practical examples, the comparison shows that the simulation model is capable of predicting the realistic responses of a rotor system. The simulation approaches developed in this work can be used in the analysis of the superharmonic vibrations of general rotor-bearing systems.
Resumo:
The electricity distribution sector will face significant changes in the future. Increasing reliability demands will call for major network investments. At the same time, electricity end-use is undergoing profound changes. The changes include future energy technologies and other advances in the field. New technologies such as microgeneration and electric vehicles will have different kinds of impacts on electricity distribution network loads. In addition, smart metering provides more accurate electricity consumption data and opportunities to develop sophisticated load modelling and forecasting approaches. Thus, there are both demands and opportunities to develop a new type of long-term forecasting methodology for electricity distribution. The work concentrates on the technical and economic perspectives of electricity distribution. The doctoral dissertation proposes a methodology to forecast electricity consumption in the distribution networks. The forecasting process consists of a spatial analysis, clustering, end-use modelling, scenarios and simulation methods, and the load forecasts are based on the application of automatic meter reading (AMR) data. The developed long-term forecasting process produces power-based load forecasts. By applying these results, it is possible to forecast the impacts of changes on electrical energy in the network, and further, on the distribution system operator’s revenue. These results are applicable to distribution network and business planning. This doctoral dissertation includes a case study, which tests the forecasting process in practice. For the case study, the most prominent future energy technologies are chosen, and their impacts on the electrical energy and power on the network are analysed. The most relevant topics related to changes in the operating environment, namely energy efficiency, microgeneration, electric vehicles, energy storages and demand response, are discussed in more detail. The study shows that changes in electricity end-use may have radical impacts both on electrical energy and power in the distribution networks and on the distribution revenue. These changes will probably pose challenges for distribution system operators. The study suggests solutions for the distribution system operators on how they can prepare for the changing conditions. It is concluded that a new type of load forecasting methodology is needed, because the previous methods are no longer able to produce adequate forecasts.
Resumo:
Utilization of light and illumination systems in automotive industry for different purposes has been increased significantly in recent years. Volvo as one of the leading companies in manufacturing of luxury cars has found the great capacity in this area. The performance of such an illumination systems is one of the challenges that engineers in this industry are facing with. In this study an effort has been made to design a system to make the iron mark of Volvo being illuminated and the system is being evaluated by optics simulation in software using Ray optics method. At the end, results are assessed and some optimizations are carried out. Different kind of light guides, front side of the iron mark and some possible arrangement for LED also evaluated and different materials tested. The best combination from uniformity, color and amount of luminance aspect selected as a possible solution for this special project which can be used as a base for further studies in Volvo.
Resumo:
Global energy consumption has been increasing yearly and a big portion of it is used in rotating electrical machineries. It is clear that in these machines energy should be used efficiently. In this dissertation the aim is to improve the design process of high-speed electrical machines especially from the mechanical engineering perspective in order to achieve more reliable and efficient machines. The design process of high-speed machines is challenging due to high demands and several interactions between different engineering disciplines such as mechanical, electrical and energy engineering. A multidisciplinary design flow chart for a specific type of high-speed machine in which computer simulation is utilized is proposed. In addition to utilizing simulation parallel with the design process, two simulation studies are presented. The first is used to find the limits of two ball bearing models. The second is used to study the improvement of machine load capacity in a compressor application to exceed the limits of current machinery. The proposed flow chart and simulation studies show clearly that improvements in the high-speed machinery design process can be achieved. Engineers designing in high-speed machines can utilize the flow chart and simulation results as a guideline during the design phase to achieve more reliable and efficient machines that use energy efficiently in required different operation conditions.
Resumo:
The objective of the work is to study the flow behavior and to support the design of air cleaner by dynamic simulation.In a paper printing industry, it is necessary to monitor the quality of paper when the paper is being produced. During the production, the quality of the paper can be monitored by camera. Therefore, it is necessary to keep the camera lens clean as wood particles may fall from the paper and lie on the camera lens. In this work, the behavior of the air flow and effect of the airflow on the particles at different inlet angles are simulated. Geometries of a different inlet angles of single-channel and double-channel case were constructed using ANSYS CFD Software. All the simulations were performed in ANSYS Fluent. The simulation results of single-channel and double-channel case revealed significant differences in the behavior of the flow and the particle velocity. The main conclusion from this work are in following. 1) For the single channel case the best angle was 0 degree because in that case, the air flow can keep 60% of the particles away from the lens which would otherwise stay on lens. 2) For the double channel case, the best solution was found when the angle of the first inlet was 0 degree and the angle of second inlet was 45 degree . In that case, the airflow can keep 91% of particles away from the lens which would otherwise stay on lens.
Resumo:
This dissertation describes an approach for developing a real-time simulation for working mobile vehicles based on multibody modeling. The use of multibody modeling allows comprehensive description of the constrained motion of the mechanical systems involved and permits real-time solving of the equations of motion. By carefully selecting the multibody formulation method to be used, it is possible to increase the accuracy of the multibody model while at the same time solving equations of motion in real-time. In this study, a multibody procedure based on semi-recursive and augmented Lagrangian methods for real-time dynamic simulation application is studied in detail. In the semirecursive approach, a velocity transformation matrix is introduced to describe the dependent coordinates into relative (joint) coordinates, which reduces the size of the generalized coordinates. The augmented Lagrangian method is based on usage of global coordinates and, in that method, constraints are accounted using an iterative process. A multibody system can be modelled as either rigid or flexible bodies. When using flexible bodies, the system can be described using a floating frame of reference formulation. In this method, the deformation mode needed can be obtained from the finite element model. As the finite element model typically involves large number of degrees of freedom, reduced number of deformation modes can be obtained by employing model order reduction method such as Guyan reduction, Craig-Bampton method and Krylov subspace as shown in this study The constrained motion of the working mobile vehicles is actuated by the force from the hydraulic actuator. In this study, the hydraulic system is modeled using lumped fluid theory, in which the hydraulic circuit is divided into volumes. In this approach, the pressure wave propagation in the hoses and pipes is neglected. The contact modeling is divided into two stages: contact detection and contact response. Contact detection determines when and where the contact occurs, and contact response provides the force acting at the collision point. The friction between tire and ground is modelled using the LuGre friction model, which describes the frictional force between two surfaces. Typically, the equations of motion are solved in the full matrices format, where the sparsity of the matrices is not considered. Increasing the number of bodies and constraint equations leads to the system matrices becoming large and sparse in structure. To increase the computational efficiency, a technique for solution of sparse matrices is proposed in this dissertation and its implementation demonstrated. To assess the computing efficiency, augmented Lagrangian and semi-recursive methods are implemented employing a sparse matrix technique. From the numerical example, the results show that the proposed approach is applicable and produced appropriate results within the real-time period.
Resumo:
The investments have always been considered as an essential backbone and so-called ‘locomotive’ for the competitive economies. However, in various countries, the state has been put under tight budget constraints for the investments in capital intensive projects. In response to this situation, the cooperation between public and private sector has grown based on public-private mechanism. The promotion of favorable arrangement for collaboration between public and private sectors for the provision of policies, services, and infrastructure in Russia can help to address the problems of dry ports development that neither municipalities nor the private sector can solve alone. Especially, the stimulation of public-private collaboration is significant under the exposure to externalities that affect the magnitude of the risks during all phases of project realization. In these circumstances, the risk in the projects also is becoming increasingly a part of joint research and risk management practice, which is viewed as a key approach, aiming to take active actions on existing global and specific factors of uncertainties. Meanwhile, a relatively little progress has been made on the inclusion of the resilience aspects into the planning process of a dry ports construction that would instruct the capacity planner, on how to mitigate the occurrence of disruptions that may lead to million dollars of losses due to the deviation of the future cash flows from the expected financial flows on the project. The current experience shows that the existing methodological base is developed fragmentary within separate steps of supply chain risk management (SCRM) processes: risk identification, risk evaluation, risk mitigation, risk monitoring and control phases. The lack of the systematic approach hinders the solution of the problem of risk management processes of dry port implementation. Therefore, management of various risks during the investments phases of dry port projects still presents a considerable challenge from the practical and theoretical points of view. In this regard, the given research became a logical continuation of fundamental research, existing in the financial models and theories (e.g., capital asset pricing model and real option theory), as well as provided a complementation for the portfolio theory. The goal of the current study is in the design of methods and models for the facilitation of dry port implementation through the mechanism of public-private partnership on the national market that implies the necessity to mitigate, first and foremost, the shortage of the investments and consequences of risks. The problem of the research was formulated on the ground of the identified contradictions. They rose as a continuation of the trade-off between the opportunities that the investors can gain from the development of terminal business in Russia (i.e. dry port implementation) and risks. As a rule, the higher the investment risk, the greater should be their expected return. However, investors have a different tolerance for the risks. That is why it would be advisable to find an optimum investment. In the given study, the optimum relates to the search for the efficient portfolio, which can provide satisfaction to the investor, depending on its degree of risk aversion. There are many theories and methods in finance, concerning investment choices. Nevertheless, the appropriateness and effectiveness of particular methods should be considered with the allowance of the specifics of the investment projects. For example, the investments in dry ports imply not only the lump sum of financial inflows, but also the long-term payback periods. As a result, capital intensity and longevity of their construction determine the necessity from investors to ensure the return on investment (profitability), along with the rapid return on investment (liquidity), without precluding the fact that the stochastic nature of the project environment is hardly described by the formula-based approach. The current theoretical base for the economic appraisals of the dry port projects more often perceives net present value (NPV) as a technique superior to other decision-making criteria. For example, the portfolio theory, which considers different risk preference of an investor and structures of utility, defines net present value as a better criterion of project appraisal than discounted payback period (DPP). Meanwhile, in business practice, the DPP is more popular. Knowing that the NPV is based on the assumptions of certainty of project life, it cannot be an accurate appraisal approach alone to determine whether or not the project should be accepted for the approval in the environment that is not without of uncertainties. In order to reflect the period or the project’s useful life that is exposed to risks due to changes in political, operational, and financial factors, the second capital budgeting criterion – discounted payback period is profoundly important, particularly for the Russian environment. Those statements represent contradictions that exist in the theory and practice of the applied science. Therefore, it would be desirable to relax the assumptions of portfolio theory and regard DPP as not fewer relevant appraisal approach for the assessment of the investment and risk measure. At the same time, the rationality of the use of both project performance criteria depends on the methods and models, with the help of which these appraisal approaches are calculated in feasibility studies. The deterministic methods cannot ensure the required precision of the results, while the stochastic models guarantee the sufficient level of the accuracy and reliability of the obtained results, providing that the risks are properly identified, evaluated, and mitigated. Otherwise, the project performance indicators may not be confirmed during the phase of project realization. For instance, the economic and political instability can result in the undoing of hard-earned gains, leading to the need for the attraction of the additional finances for the project. The sources of the alternative investments, as well as supportive mitigation strategies, can be studied during the initial phases of project development. During this period, the effectiveness of the investments undertakings can also be improved by the inclusion of the various investors, e.g. Russian Railways’ enterprises and other private companies in the dry port projects. However, the evaluation of the effectiveness of the participation of different investors in the project lack the methods and models that would permit doing the particular feasibility study, foreseeing the quantitative characteristics of risks and their mitigation strategies, which can meet the tolerance of the investors to the risks. For this reason, the research proposes a combination of Monte Carlo method, discounted cash flow technique, the theory of real options, and portfolio theory via a system dynamics simulation approach. The use of this methodology allows for comprehensive risk management process of dry port development to cover all aspects of risk identification, risk evaluation, risk mitigation, risk monitoring, and control phases. A designed system dynamics model can be recommended for the decision-makers on the dry port projects that are financed via a public-private partnership. It permits investors to make a decision appraisal based on random variables of net present value and discounted payback period, depending on different risks factors, e.g. revenue risks, land acquisition risks, traffic volume risks, construction hazards, and political risks. In this case, the statistical mean is used for the explication of the expected value of the DPP and NPV; the standard deviation is proposed as a characteristic of risks, while the elasticity coefficient is applied for rating of risks. Additionally, the risk of failure of project investments and guaranteed recoupment of capital investment can be considered with the help of the model. On the whole, the application of these modern methods of simulation creates preconditions for the controlling of the process of dry port development, i.e. making managerial changes and identifying the most stable parameters that contribute to the optimal alternative scenarios of the project realization in the uncertain environment. System dynamics model allows analyzing the interactions in the most complex mechanism of risk management process of the dry ports development and making proposals for the improvement of the effectiveness of the investments via an estimation of different risk management strategies. For the comparison and ranking of these alternatives in their order of preference to the investor, the proposed indicators of the efficiency of the investments, concerning the NPV, DPP, and coefficient of variation, can be used. Thus, rational investors, who averse to taking increased risks unless they are compensated by the commensurate increase in the expected utility of a risky prospect of dry port development, can be guided by the deduced marginal utility of investments. It is computed on the ground of the results from the system dynamics model. In conclusion, the outlined theoretical and practical implications for the management of risks, which are the key characteristics of public-private partnerships, can help analysts and planning managers in budget decision-making, substantially alleviating the effect from various risks and avoiding unnecessary cost overruns in dry port projects.
Resumo:
Knowledge seems to need the admixture of de facto reliability and epistemic responsibility. But philosophers have had a hard time in attempting to combine them in order to achieve a satisfactory account of knowledge. In this paper I attempt to find a solution by capitalizing on the real and ubiquitous human phenomenon that is the social dispersal of epistemic labour through time. More precisely, the central objective of the paper is to deliver a novel and plausible social account of knowledge-relevant responsibility and to consider the merits of the proposed combination of reliability and responsibility with respect to certain cases of unreflective epistemic subjects.
Resumo:
The aim of this master's thesis is to develop a two-dimensional drift-di usion model, which describes charge transport in organic solar cells. The main bene t of a two-dimensional model compared to a one-dimensional one is the inclusion of the nanoscale morphology of the active layer of a bulk heterojunction solar cell. The developed model was used to study recombination dynamics at the donor-acceptor interface. In some cases, it was possible to determine e ective parameters, which reproduce the results of the two-dimensional model in the one-dimensional case. A summary of the theory of charge transport in semiconductors was presented and discussed in the context of organic materials. Additionally, the normalization and discretization procedures required to nd a numerical solution to the charge transport problem were outlined. The charge transport problem was solved by implementing an iterative scheme called successive over-relaxation. The obtained solution is given as position-dependent electric potential, free charge carrier concentrations and current densities in the active layer. An interfacial layer, separating the pure phases, was introduced in order to describe charge dynamics occurring at the interface between the donor and acceptor. For simplicity, an e ective generation of free charge carriers in the interfacial layer was implemented. The pure phases simply act as transport layers for the photogenerated charges. Langevin recombination was assumed in the two-dimensional model and an analysis of the apparent recombination rate in the one-dimensional case is presented. The recombination rate in a two-dimensional model is seen to e ectively look like reduced Langevin recombination at open circuit. Replicating the J-U curves obtained in the two-dimensional model is, however, not possible by introducing a constant reduction factor in the Langevin recombination rate. The impact of an acceptor domain in the pure donor phase was investigated. Two cases were considered, one where the acceptor domain is isolated and another where it is connected to the bulk of the acceptor. A comparison to the case where no isolated domains exist was done in order to quantify the observed reduction in the photocurrent. The results show that all charges generated at the isolated domain are lost to recombination, but the domain does not have a major impact on charge transport. Trap-assisted recombination at interfacial trap states was investigated, as well as the surface dipole caused by the trapped charges. A theoretical expression for the ideality factor n_id as a function of generation was derived and shown to agree with simulation data. When the theoretical expression was fitted to simulation data, no interface dipole was observed.