990 resultados para Regulated functions
Resumo:
Sirolimus-eluting stent therapy has achieved considerable success in overcoming coronary artery restenosis. However, there remain a large number of patients presenting with restenosis after the treatment, and the source of its persistence remains unclarified. Although recent evidence supports the contribution of vascular stem/progenitor cells in restenosis formation, their functional and molecular responses to sirolimus are largely unknown.
Resumo:
This report represents the second stage of a study which was part of a wide-ranging research programme conducted by the Centre for Excellence of Interprofessional Education, Queen’s University Belfast. The study was an investigation into learner-teacher interaction in the education of undergraduate medical and other healthcare students in order to inform how teachers might facilitate learning in a healthcare setting. It focused in particular on clinical and ward-based tutorials and seminars.
In order to give meaning to this second stage of the study, the report will contextualise the learner-teacher interaction study, will describe the research methods and methods of analysis developed and used to explore learner-teacher interaction. It will then focus on this second stage of the research and the results of the analysis of video sessions of clinical and ward-based tutorials and seminars. In particular it will identify examples of good practice and missed opportunities for the engagement of the learners.
Resumo:
Many of the physiological functions of von Willebrand Factor (VWF), including its binding interaction with blood platelets, are regulated by the magnitude of applied fluid/hydrodynamic stress. We applied two complementary strategies to study the effect of fluid forces on the solution structure of VWF. First, small-angle neutron scattering was used to measure protein conformation changes in response to laminar shear rates (G) up to 3000/s. Here, purified VWF was sheared in a quartz Couette cell and protein conformation was measured in real time over length scales from 2-140 nm. Second, changes in VWF structure up to 9600/s were quantified by measuring the binding of a fluorescent probe 1,1'-bis(anilino)-4-,4'-bis(naphtalene)-8,8'-disulfonate (bis-ANS) to hydrophobic pockets exposed in the sheared protein. Small angle neutron scattering studies, coupled with quantitative modeling, showed that VWF undergoes structural changes at G < 3000/s. These changes were most prominent at length scales <10 nm (scattering vector (q) range >0.6/nm). A mathematical model attributes these changes to the rearrangement of domain level features within the globular section of the protein. Studies with bis-ANS demonstrated marked increase in bis-ANS binding at G > 2300/s. Together, the data suggest that local rearrangements at the domain level may precede changes at larger-length scales that accompany exposure of protein hydrophobic pockets. Changes in VWF conformation reported here likely regulate protein function in response to fluid shear.
Resumo:
The adapter molecule CAS is localized primarily within focal adhesions in fibroblasts. Because many of the cellular functions attributed to CAS are likely to be dependent on its presence in focal adhesions, this study was undertaken to identify regions of the protein that are involved in its localization. The SH3 domain of CAS, when expressed in isolation from the rest of the protein, was able to target to focal adhesions, whereas a variant containing a point mutation that rendered the SH3 domain unable to associate with FAK remained cytoplasmic. However, in the context of full-length CAS, this mutation did not prevent CAS localization to focal adhesions. Two other variants of CAS that contained deletions of either the SH3 domain alone, or the SH3 domain together with an adjoining proline-rich region, also retained the capacity to localize to focal adhesions. A second focal adhesion targeting region was mapped to the extreme carboxy terminus of CAS. The identification of this second focal adhesion targeting domain in CAS ascribes a previously unknown function to the highly conserved C terminus of CAS. The regulated targeting of CAS to focal adhesions by two independent domains may reflect the important role of CAS within this subcellular compartment.
Resumo:
SRC family kinases play essential roles in a variety of cellular functions, including proliferation, survival, differentiation, and apoptosis. The activities of these kinases are regulated by intramolecular interactions and by heterologous binding partners that modulate the transition between active and inactive structural conformations. p130(CAS) (CAS) binds directly to both the SH2 and SH3 domains of c-SRC and therefore has the potential to structurally alter and activate this kinase. In this report, we demonstrate that overexpression of full-length CAS in COS-1 cells induces c-SRC-dependent tyrosine phosphorylation of multiple endogenous cellular proteins. A carboxy-terminal fragment of CAS (CAS-CT), which contains the c-SRC binding site, was sufficient to induce c-SRC-dependent protein tyrosine kinase activity, as measured by tyrosine phosphorylation of cortactin, paxillin, and, to a lesser extent, focal adhesion kinase. A single amino acid substitution located in the binding site for the SRC SH3 domain of CAS-CT disrupted CAS-CT's interaction with c-SRC and inhibited its ability to induce tyrosine phosphorylation of cortactin and paxillin. Murine C3H10T1/2 fibroblasts that expressed elevated levels of tyrosine phosphorylated CAS and c-SRC-CAS complexes exhibited an enhanced ability to form colonies in soft agar and to proliferate in the absence of serum or growth factors. CAS-CT fully substituted for CAS in mediating growth in soft agar but was less effective in promoting serum-independent growth. These data suggest that CAS plays an important role in regulating specific signaling pathways governing cell growth and/or survival, in part through its ability to interact with and modulate the activity of c-SRC.
Resumo:
Finding a suitable cell source for endothelial cells (ECs) for cardiovascular regeneration is a challenging issue for regenerative medicine. In the paper we describe a novel mechanism regulating induced pluripotent stem cells (iPSC) differentiation into ECs, with a particular focus on miRNAs and their targets. We first established a protocol using collagen IV and VEGF to drive the functional differentiation of iPSCs into ECs and compared the miRNA signature of differentiated and undifferentiated cells. Among the miRNAs overrepresented in differentiated cells, we focused on microRNA-21 (miR-21) and studied its role in iPSC differentiation. Overexpression of miR-21 in pre-differentiated iPSCs induced EC marker upregulation and in vitro and in vivo capillary formation; accordingly, inhibition of miR-21 produced the opposite effects. Importantly, miR-21 overexpression increased TGF-β2 mRNA and secreted protein level, consistent with the strong upregulation of TGF-β2 during iPSC differentiation. Indeed, treatment of iPSCs with TGFβ-2 induced EC marker expression and in vitro tube formation. Inhibition of SMAD3, a downstream effector of TGFβ-2, strongly decreased VE-cadherin expression. Furthermore, TGFβ-2 neutralization and knockdown inhibited miR-21-induced EC marker expression. Finally, we confirmed the PTEN/Akt pathway as a direct target of miR-21 and we showed that PTEN knockdown is required for miR-21 mediated endothelial differentiation. In conclusion, we elucidated a novel signaling pathway that promotes the differentiation of iPSC into functional ECs suitable for regenerative medicine applications.
Resumo:
Cytosolic phospholipase A2 (cPLA2) is thought to be the rate-limiting enzyme in the arachidonic acid/eicosanoid cascade. The ability of various agonists to increase steady-state cPLA2 mRNA levels has previously been reported. The current study delineates the contributions of transcriptional and post-transcriptional processes to the regulation of cPLA2 gene expression in response to a variety of agonists in cultured rat glomerular mesangial cells. Epidermal growth factor, platelet-derived growth factor, serum and phorbol myristate acetate all increase the half-life of cPLA2 mRNA transcripts, indicating a role for post-transcriptional modulation of gene expression. The presence of three ATTTA motifs in the 3' untranslated region (3'UTR) of the rat cPLA2 cDNA is ascertained. Heterologous expression of chimeric constructs with different 3'UTRs ligated into the 3' end of the luciferase coding region reveals that the presence of the cPLA2 3'UTR results in reduced luciferase activity compared with constructs without the cPLA2 3'UTR. Furthermore, the luciferase activity in the constructs with the cPLA2 3'UTR is increased in response to the same agonists which stabilize endogenous cPLA2 mRNA. A negligible effect of these agonists on transcriptional control of cPLA2 is evident using promoter-reporter constructs expressed in transient and stable transfectants. Taken together, these results indicate predominant post-transcriptional regulation of cPLA2 mRNA levels.
Resumo:
Organotypic models may provide mechanistic insight into colorectal cancer (CRC) morphology. Three-dimensional (3D) colorectal gland formation is regulated by phosphatase and tensin homologue deleted on chromosome 10 (PTEN) coupling of cell division cycle 42 (cdc42) to atypical protein kinase C (aPKC). This study investigated PTEN phosphatase-dependent and phosphatase-independent morphogenic functions in 3D models and assessed translational relevance in human studies. Isogenic PTEN-expressing or PTEN-deficient 3D colorectal cultures were used. In translational studies, apical aPKC activity readout was assessed against apical membrane (AM) orientation and gland morphology in 3D models and human CRC. We found that catalytically active or inactive PTEN constructs containing an intact C2 domain enhanced cdc42 activity, whereas mutants of the C2 domain calcium binding region 3 membrane-binding loop (M-CBR3) were ineffective. The isolated PTEN C2 domain (C2) accumulated in membrane fractions, but C2 M-CBR3 remained in cytosol. Transfection of C2 but not C2 M-CBR3 rescued defective AM orientation and 3D morphogenesis of PTEN-deficient Caco-2 cultures. The signal intensity of apical phospho-aPKC correlated with that of Na/H exchanger regulatory factor-1 (NHERF-1) in the 3D model. Apical NHERF-1 intensity thus provided readout of apical aPKC activity and associated with glandular morphology in the model system and human colon. Low apical NHERF-1 intensity in CRC associated with disruption of glandular architecture, high cancer grade, and metastatic dissemination. We conclude that the membrane-binding function of the catalytically inert PTEN C2 domain influences cdc42/aPKC-dependent AM dynamics and gland formation in a highly relevant 3D CRC morphogenesis model system.
Resumo:
Germline mutations in BRCA1 predispose carriers to a high incidence of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. A major question has been why BRCA1 loss or mutation leads to tumors mainly in estrogen-regulated tissues, given that BRCA1 has essential functions in all cell types. Here, we report that estrogen and estrogen metabolites can cause DNA double-strand breaks (DSB) in estrogen receptora- negative breast cells and that BRCA1 is required to repair these DSBs to prevent metabolite-induced genomic instability.We found that BRCA1 also regulates estrogen metabolism and metabolite-mediated DNA damage by repressing the transcription of estrogen-metabolizing enzymes, such as CYP1A1, in breast cells. Finally, we used a knock-in human cell model with a heterozygous BRCA1 pathogenic mutation to show how BRCA1 haploinsufficiency affects these processes. Our findings provide pivotal new insights into why BRCA1 mutation drives the formation of tumors in estrogen-regulated tissues, despite the general role of BRCA1 in DNA repair in all cell types. © 2014 American Association for Cancer Research.
Resumo:
Processing of the 'CaaX' motif found on the C-termini of many proteins, including the proto-oncogene Ras, requires the ER (endoplasmic reticulum)-resident protease RCE1 (Ras-converting enzyme 1) and is necessary for the proper localization and function of many of these 'CaaX' proteins. In the present paper, we report that several mammalian species have a novel isoform (isoform 2) of RCE1 resulting from an alternate splice site and producing an N-terminally truncated protein. We demonstrate that both RCE1 isoform 1 and the newly identified isoform 2 are required to reinstate proper H-Ras processing and thus plasma membrane localization in RCE1-null cells. In addition, we show that the deubiquitinating enzyme USP17 (ubiquitin-specific protease 17), previously shown to modulate RCE1 activity, can regulate the abundance and localization of isoform 2. Furthermore, we show that isoform 2 is ubiquitinated on Lys43 and deubiquitinated by USP17. Collectively, the findings of the present study indicate that RCE1 isoform 2 is required for proper 'CaaX' processing and that USP17 can regulate this via its modulation of RCE1 isoform 2 ubiquitination.
Resumo:
Hopanoids are bacterial surrogates of eukaryotic membrane sterols and among earth's most abundant natural products. Their molecular fossils remain in sediments spanning more than a billion years. However, hopanoid metabolism and function are not fully understood. Burkholderia species are environmental opportunistic pathogens that produce hopanoids and also occupy diverse ecological niches. We investigated hopanoids biosynthesis in Burkholderia cenocepacia by deletion mutagenesis and structural characterization of the hopanoids produced by the mutants. The enzymes encoded by hpnH and hpnG were essential for production of all C35 extended hopanoids, including bacteriohopanetetrol (BHT), BHT glucosamine and BHT cyclitol ether. Deletion of hpnI resulted in BHT production, while ΔhpnJ produced only BHT glucosamine. Thus, HpnI is required for BHT glucosamine production while HpnJ is responsible for its conversion to the cyclitol ether. The ΔhpnH and ΔhpnG mutants could not grow under any stress condition tested, whereas ΔhpnI, ΔhpnJ and ΔhpnK displayed wild-type growth rates when exposed to detergent, but varying levels of sensitivity to low pH and polymyxin B. This study not only elucidates the biosynthetic pathway of hopanoids in B. cenocepacia, but also uncovers a biosynthetic role for the conserved proteins HpnI, HpnJ and HpnK in other hopanoid-producing bacteria.whereas ΔhpnI, ΔhpnJ and ΔhpnK displayed wild-type growth rates when exposed to detergent, but varying levels of sensitivity to low pH and polymyxin B. This study not only elucidates the biosynthetic pathway of hopanoids in B. cenocepacia, but also uncovers a biosynthetic role for the conserved proteins HpnI, HpnJ and HpnK in other hopanoid-producing bacteria.
Resumo:
Aflatoxin B1 (AFB1), ochratoxin A (OTA) and fumonisin B1 (FB1) are contaminants which have been shown to regularly co-occur in a range of foods. However, only a small number of studies have evaluated the interactive effect of binary and tertiary mycotoxins. The present study evaluated the effects of low levels of each mycotoxin in combination at their EU regulatory limits. Toxic effect with respect to cell viability was measured by MTT and neutral red assays, assessing mitochondria and lysosome integrities respectively. Individual toxicity showed that OTA (10 μg/ml) was the most cytotoxic mycotoxin in all three cell lines studied (caco-2, MDBK and raw 264.7). Binary combinations were cytotoxic to the MDBK cell line in the order [OTA/FB1] > [AFB1/FB1] > [AFB1/OTA], whilst all effects observed were classified as being additive. Tertiary combinations of AFB1, FB1 and OTA at the EU regulatory limits were tested and not found to exhibit measurable cytotoxicity in MDBK, caco-2 or raw 264.7 cells. However by increasing these concentrations above the legal limits to OTA (3 μg/ml), FB1 (8 μg/ml) and AFB1 (1.28 μg/ml), cytotoxicity was observed with up to 26% reduction in cell viability and synergistic effects were evident with regard to mitochondrial integrity. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
Predictive Demand Response (DR) algorithms allow schedulable loads in power systems to be shifted to off-peak times. However, the size of the optimisation problems associated with predictive DR can grow very large and so efficient implementations of algorithms are desirable. In this paper Laguerre functions are used to significantly reduce the size of the optimisation needed to implement predictive DR, thus significantly increasing the efficiency of the implementation. © 2013 IEEE.