973 resultados para Refrigeration and refrigerating machinery


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microtubule-based transport mediates the sorting and dispersal of many cellular components and pathogens. However, the mechanisms by which motor complexes are recruited to and regulated on different cargos remain poorly understood. Here we describe a large-scale biochemical screen for novel factors associated with RNA localization signals mediating minus end-directed mRNA transport during Drosophila development. We identified the protein Lissencephaly-1 (Lis1) and found that minus-end travel distances of localizing transcripts are dramatically reduced in lis1 mutant embryos. Surprisingly, given its well-documented role in regulating dynein mechanochemistry, we uncovered an important requirement for Lis1 in promoting the recruitment of dynein and its accessory complex dynactin to RNA localization complexes. Furthermore, we provide evidence that Lis1 levels regulate the overall association of dynein with dynactin. Our data therefore reveal a critical role for Lis1 within the mRNA localization machinery and suggest a model in which Lis1 facilitates motor complex association with cargos by promoting the interaction of dynein with dynactin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The functions of ribosomes in translation are complex and involve different types of activities critical for decoding the genetic code, linkage of amino acids via amide bonds to form polypeptide chains, as well as the release and proper targeting of the synthesized protein. Non-protein-coding RNAs (ncRNAs) have been recognized to be crucial in establishing regulatory networks.1 However all of the recently discovered ncRNAs involved in translation regulation target the mRNA rather than the ribosome. The main goal of this project is to identify potential novel ncRNAs that directly bind and possibly regulate the ribosome during protein biosynthesis. To address this question we applied various stress conditions to the archaeal model organism Haloferax volcanii and deep-sequenced the ribosome-associated small ncRNA interactome. In total we identified 6.250 ncRNA candidates. Significantly, we observed the emersed presence of tRNA-derived fragments (tRFs). These tRFs have been identified in all domains of life and represent a growing, yet functionally poorly understood, class of ncRNAs. Here we present evidence that tRFs from H. volcanii directly bind to ribosomes. In the presented genomic screen of the ribosome-associated RNome a 26 residue long fragment originating from the 5’ part of valine tRNA was by far the most abundant tRF. The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. As a consequence of ribosome binding, Val-tRF reduces protein synthesis by interfering with peptidyl transferase activity. Therefore this tRF functions as ribosome-bound small ncRNA capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production.2 Currently we are investigating the binding site of this tRF on the 30S subunit in more detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mitochondrial outer membrane (MOM) separates the mitochondria from the cytoplasm, serving both as a barrier and as a gateway. Protein complexes — believed to be universally conserved in all eukaryotes — reside in the MOM to orchestrate and control metabolite exchange, lipid metabolism and uptake of biopolymers such as protein and RNA. African trypanosomes are the causative agent of the sleeping sickness in humans. The parasites are among the earliest diverging eukaryotes that have bona fide mitochondria capable of oxidative phosphorylation. Trypanosomes have unique mitochondrial biology that concerns their mitochondrial metabolism and their unusual mitochondrial morphology that differs to great extent between life stages. Another striking feature is the organization of the mitochondrial genome that does not encode any tRNA genes, thus all tRNAs needed for mitochondrial translation have to be imported. However, the MOM of T. brucei is essentially unchartered territory. It lacks a canonical protein import machinery and facilitation of tRNA translocation remains completely elusive. Using biochemical fractionation and label-free quantitative mass spectrometry for correlated protein abundance-profiling we were able to identify a cluster of 82 candidate proteins that can be localized to the trypanosomal MOM with high confidence. This enabled us to identify a highly unusual, potentially archaic protein import machinery that might also transport tRNAs. Moreover, two-thirds of the identified polypeptides present on the MOM have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the MOM of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of insect-stage parasites and therefore directly or indirectly are involved in the regulation of mitochondrial morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eukaryotic cells are compartmentalized into membrane-bound organelles in order to provide sheltered reaction rooms for various specific processes. Organelles are not randomly distributed in a cell or operate isolated from each other. At the contrary — some organelles are closely linked and their functions are tightly orchestrated. The most well-known example of two such organelles acting in concert are the ER and the mitochondrion that work together in order to coordinate cellular lipid biosynthesis, maintain Ca2+-homeostasis, regulate mitochondrial division and control mitochondrial/ER shape as well as to synchronize the movement of these organelles within a cell. To study the mitochondrion and its interface to the ER requires a simplified mitochondrial system. African trypanosomes represent such a system. The unicellular parasite that causes devastating diseases in humans and animals has only one large mitochondrion that does not undergo fission/fusion events except for the context of cell division. Moreover, mitochondrial functions and morphology are highly regulated throughout the life cycle of the protozoan. Central to the understanding of how mitochondria control their morphology, communicate with their surroundings and manage exchange of metabolites and transport of biopolymers (proteins, RNAs) is the mitochondrial outer membrane (MOM), as the MOM defines the boundary of the organelle. Recently, we have purified the MOM of T. brucei and characterized its proteome using label-free quantitative mass spectrometry for protein abundance profiling in combination with statistical analysis. Our results show that the trypanosomal MOM proteome consists of 82 proteins, two thirds of which have never been associated with mitochondria before. Among these, we identified novel factors required to regulate mitochondrial morphology and the long-elusive protein import machinery of T. brucei. A comparison with the MOM proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. One of these is the Miro-GTPase Gem1. In yeast, this Ca2+-EF-Hand containing polypeptide is thought to be involved in a protein complex that physically tethers the mitochondrion to the ER. Interestingly, a putative tethering complex in mammalian cells was linked to the mitochondrial fusion/fission machinery. Thus, the concept of a protein complex-mediated connection seems to be a general and conserved feature. We are currently investigating, if such a protein complex exists in T. brucei and if the trypanosomal Gem1 protein is involved. This ER-subdomain associated with mitochondria has been termed mitochondria-associated ER-membranes or MAM. The MAM has recently been implicated to play a key role in Alzheimer’s disease. It is therefore of broad and general interest to establish other eukaryotic model systems in order to investigate the MAM-MOM connection in more detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Central to the understanding of how mitochondria control their morphology, communicate with their surroundings and manage exchange of metabolites and transport of biopolymers (proteins, RNAs) is the mitochondrial outer membrane (MOM), as the MOM defines the boundary of the organelle. Recently, we have purified the MOM of the mitochondrial model organism T. brucei and characterized its proteome. Our results show that the trypanosomal MOM proteome consists of 82 proteins. Among these, we identified novel factors required to regulate mitochondrial morphology and the long-elusive protein import machinery of T. brucei. A comparison with the MOM proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. One of these is the Miro-GTPase Gem1. In yeast, this Ca2+-EF-Hand containing polypeptide is thought to be involved in a protein complex that physically tethers the mitochondrion to the ER. In mammalian cells, a putative tethering complex was linked to the mitochondrial fusion/fission machinery. Thus, the concept of a protein complex-mediated connection seems to be a general and conserved feature. We are currently investigating if such a protein complex exists in T. brucei and if the trypanosomal Gem1 protein is involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2012, the complete genomic sequence of a new and potentially harmful influenza A-like virus from bats (H17N10) was identified. However, infectious influenza virus was neither isolated from infected bats nor reconstituted, impeding further characterization of this virus. Here we show the generation of an infectious chimeric virus containing six out of the eight bat virus genes, with the remaining two genes encoding the haemagglutinin and neuraminidase proteins of a prototypic influenza A virus. This engineered virus replicates well in a broad range of mammalian cell cultures, human primary airway epithelial cells and mice, but poorly in avian cells and chicken embryos without further adaptation. Importantly, the bat chimeric virus is unable to reassort with other influenza A viruses. Although our data do not exclude the possibility of zoonotic transmission of bat influenza viruses into the human population, they indicate that multiple barriers exist that makes this an unlikely event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

That gene transfer to plant cells is a temperature-sensitive process has been known for more than 50 years. Previous work indicated that this sensitivity results from the inability to assemble a functional T pilus required for T-DNA and protein transfer to recipient cells. The studies reported here extend these observations and more clearly define the molecular basis of this assembly and transfer defect. T-pilus assembly and virulence protein accumulation were monitored in Agrobacterium tumefaciens strain C58 at different temperatures ranging from 20 degrees C to growth-inhibitory 37 degrees C. Incubation at 28 degrees C but not at 26 degrees C strongly inhibited extracellular assembly of the major T-pilus component VirB2 as well as of pilus-associated protein VirB5, and the highest amounts of T pili were detected at 20 degrees C. Analysis of temperature effects on the cell-bound virulence machinery revealed three classes of virulence proteins. Whereas class I proteins (VirB2, VirB7, VirB9, and VirB10) were readily detected at 28 degrees C, class II proteins (VirB1, VirB4, VirB5, VirB6, VirB8, VirB11, VirD2, and VirE2) were only detected after cell growth below 26 degrees C. Significant levels of class III proteins (VirB3 and VirD4) were only detected at 20 degrees C and not at higher temperatures. Shift of virulence-induced agrobacteria from 20 to 28 or 37 degrees C had no immediate effect on cell-bound T pili or on stability of most virulence proteins. However, the temperature shift caused a rapid decrease in the amount of cell-bound VirB3 and VirD4, and VirB4 and VirB11 levels decreased next. To assess whether destabilization of virulence proteins constitutes a general phenomenon, levels of virulence proteins and of extracellular T pili were monitored in different A. tumefaciens and Agrobacterium vitis strains grown at 20 and 28 degrees C. Levels of many virulence proteins were strongly reduced at 28 degrees C compared to 20 degrees C, and T-pilus assembly did not occur in all strains except "temperature-resistant" Ach5 and Chry5. Virulence protein levels correlated well with bacterial virulence at elevated temperature, suggesting that degradation of a limited set of virulence proteins accounts for the temperature sensitivity of gene transfer to plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

VirB6 from Agrobacterium tumefaciens is an essential component of the type IV secretion machinery for T pilus formation and genetic transformation of plants. Due to its predicted topology as a polytopic inner membrane protein, it was proposed to form the transport pore for cell-to-cell transfer of genetic material and proteinaceous virulence factors. Here, we show that the absence of VirB6 leads to reduced cellular levels of VirB5 and VirB3, which were proposed to assist T pilus formation as minor component(s) or assembly factor(s), respectively. Overexpression of virB6 in trans restored levels of cell-bound and T pilus-associated VirB5 to wild type but did not restore VirB3 levels. Thus, VirB6 has a stabilizing effect on VirB5 accumulation, thereby regulating T pilus assembly. In the absence of VirB6, cell-bound VirB7 monomers and VirB7-VirB9 heterodimers were reduced and VirB7 homodimer formation was abolished. This effect could not be restored by expression of VirB6 in trans. Expression of TraD, a component of the transfer machinery of the IncN plasmid pKM101, with significant sequence similarity to VirB6, restored neither protein levels nor bacterial virulence but partly permitted T pilus formation in a virB6 deletion strain. VirB6 may therefore regulate T pilus formation by direct interaction with VirB5, and wild-type levels of VirB3 and VirB7 homodimers are not required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 3' end processing of animal replication-dependent histone mRNAs is activated during G1/S-phase transition. The processing site is recognized by stem-loop binding protein and the U7 snRNP, but cleavage additionally requires a heat-labile factor (HLF), composed of cleavage/polyadenylation specificity factor, symplekin, and cleavage stimulation factor 64 (CstF64). Although HLF has been shown to be cell cycle regulated, the mechanism of this regulation is unknown. Here we show that levels of CstF64 increase toward the S phase and its depletion affects histone RNA processing, S-phase progression, and cell proliferation. Moreover, analyses of the interactions between CstF64, symplekin, and the U7 snRNP-associated proteins FLASH and Lsm11 indicate that CstF64 is important for recruiting HLF to histone precursor mRNA (pre-mRNA)-resident proteins. Thus, CstF64 is central to the function of HLF and appears to be at least partly responsible for its cell cycle regulation. Additionally, we show that misprocessed histone transcripts generated upon CstF64 depletion mainly accumulate in the nucleus, where they are targets of the exosome machinery, while a small cytoplasmic fraction is partly associated with polysomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eukaryotic cells are compartmentalized into membrane-bound organelles in order to provide sheltered reaction rooms for various specific processes. Organelles are not randomly distributed in a cell or operate isolated from each other. At the contrary — some organelles are closely linked and their functions are tightly orchestrated. The most well-known example of two such organelles acting in concert are the ER and the mitochondrion that work together in order to coordinate cellular lipid biosynthesis, maintain Ca2+-homeostasis, regulate mitochondrial division and control mitochondrial/ER shape as well as to synchronize the movement of these organelles within a cell. To study the mitochondrion and its interface to the ER requires a simplified mitochondrial system. African trypanosomes represent such a system. The unicellular parasite that causes devastating diseases in humans and animals has only one large mitochondrion that does not undergo fission/fusion events except for the context of cell division. Moreover, mitochondrial functions and morphology are highly regulated throughout the life cycle of the protozoan. Central to the understanding of how mitochondria control their morphology, communicate with their surroundings and manage exchange of metabolites and transport of biopolymers (proteins, RNAs) is the mitochondrial outer membrane (MOM), as the MOM defines the boundary of the organelle. Recently, we have purified the MOM of T. brucei and characterized its proteome using label-free quantitative mass spectrometry for protein abundance profiling in combination with statistical analysis. Our results show that the trypanosomal MOM proteome consists of 82 proteins, two thirds of which have never been associated with mitochondria before. Among these, we identified novel factors required to regulate mitochondrial morphology and the long-elusive protein import machinery of T. brucei. A comparison with the MOM proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. One of these is the Miro-GTPase Gem1. In yeast, this Ca2+-EF-Hand containing polypeptide is thought to be involved in a protein complex that physically tethers the mitochondrion to the ER. Interestingly, a putative tethering complex in mammalian cells was linked to the mitochondrial fusion/fission machinery. Thus, the concept of a protein complex-mediated connection seems to be a general and conserved feature. We are currently investigating, if such a protein complex exists in T. brucei and if the trypanosomal Gem1 protein is involved. This ER-subdomain associated with mitochondria has been termed mitochondria-associated ER-membranes or MAM. The MAM has recently been implicated to play a key role in Alzheimer’s disease. It is therefore of broad and general interest to establish other eukaryotic model systems in order to investigate the MAM-MOM connection in more detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ribosome is central to protein biosynthesis and the focus of extensive research. Recent biochemical and structural studies, especially detailed crystal structures and high resolution Cryo-EM in different functional states have broadened our understanding of the ribosome and its mode of action. However, the exact mechanism of peptide bond formation and how the ribosome catalyzes this reaction is not yet understood. Also, consequences of direct oxidative stress to the ribosome and its effects on translation have not been studied. So far, no conventional replacement or even removal of the peptidyl transferase center's bases has been able to affect in vitro translation. Significant contribution to the catalytic activity seems to stem from the ribose-phosphate backbone, specifically 2'OH of A2451. Using the technique of atomic mutagenesis, novel unnatural bases can be introduced to any desired position in the 23S rRNA, surpassing conventional mutagenesis and effectively enabling to alter single atoms in the ribosome. Reconstituting ribosomes in vitro using this approach, we replaced universally conserved PTC bases with synthetic counterparts carrying the most common oxidations 8-oxorA, 5-HOrU and 5-HOrC. To investigate the consequent effects on translation, the chemically engineered ribosomes were studied the in various functional assays. Incorporation of different oxidized bases into the 70S ribosome affected the ribosomes in different ways. Depending on the nucleobase modified, the reconstituted ribosomes exhibited radical deceleration of peptide bond formation, decrease of synthesis efficiency or even an increase of translation rate. These results may further our understanding of the residues involved in the peptide bond formation mechanism, as well as the disease-relevant effects of oxydative stress on the translation machinery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ribosome is central to protein biosynthesis and the focus of extensive research. Recent biochemical and structural studies, especially detailed crystal structures and high resolution Cryo-EM in different functional states have broadened our understanding of the ribosome and its mode of action. However, the exact mechanism of peptide bond formation and how the ribosome catalyzes this reaction is not yet understood. Also, consequences of direct oxidative stress to the ribosome and its effects on translation have not been studied. So far, no conventional replacement or even removal of the peptidyl transferase center's bases has been able to affect in vitro translation. Significant contribution to the catalytic activity seems to stem from the ribose-phosphate backbone, specifically 2'OH of A2451. Using the technique of atomic mutagenesis, novel unnatural bases can be introduced to any desired position in the 23S rRNA, surpassing conventional mutagenesis and effectively enabling to alter single atoms in the ribosome. Reconstituting ribosomes in vitro using this approach, we replaced universally conserved PTC bases with synthetic counterparts carrying the most common oxidations 8-oxorA, 5-HOrU and 5-HOrC. To investigate the consequent effects on translation, the chemically engineered ribosomes were studied the in various functional assays. Incorporation of different oxidized bases into the 70S ribosome affected the ribosomes in different ways. Depending on the nucleobase modified, the reconstituted ribosomes exhibited radical deceleration of peptide bond formation, decrease of synthesis efficiency or even an increase of translation rate. These results may further our understanding of the residues involved in the peptide bond formation mechanism, as well as the disease-relevant effects of oxydative stress on the translation machinery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deregulated signaling via receptor tyrosine kinase (RTK) pathways is prevalent in numerous types of human cancers and is commonly correlated with worst prognosis, resistance to various treatment modalities and increased mortality. Likewise, hypoxic tumors are often manifested by aggressive mode of growth and progression following an adaptive genetic reprogramming with consequent transcriptional activation of genes encoding proteins, which support tumor survival under low oxygen-related conditions. Consequently, both the hypoxia-inducible factor (HIF) system, which is the major mediator of hypoxia-related signaling, and numerous RTK systems are considered critical molecular targets in current cancer therapy. It is now evident that there is an intricate molecular crosstalk between RTKs and hypoxia-related signaling in the sense that hypoxia can activate expression of particular RTKs and/or their corresponding ligands, while some RTK systems have been shown to trigger activation of the HIF machinery. Moreover, signaling regulation of some RTK systems under hypoxic conditions has also been documented to take place in a HIF-independent manner. With this review we aim at overviewing the most current observations on that topic and highlight the importance of the potential co-drugging the HIF system along with particular relevant RTKs for better tumor growth control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trypanosomes show an intriguing organization of their mitochondrial DNA into a catenated network, the kinetoplast DNA (kDNA). While more than 30 proteins involved in kDNA replication have been described, only few components of kDNA segregation machinery are currently known. Electron microscopy studies identified a high-order structure, the tripartite attachment complex (TAC), linking the basal body of the flagellum via the mitochondrial membranes to the kDNA. Here we describe TAC102, a novel core component of the TAC, which is essential for proper kDNA segregation during cell division. Loss of TAC102 leads to mitochondrial genome missegregation but has no impact on proper organelle biogenesis and segregation. The protein is present throughout the cell cycle and is assembled into the newly developing TAC only after the pro-basal body has matured indicating a hierarchy in the assembly process. Furthermore, we provide evidence that the TAC is replicated de novo rather than using a semi-conservative mechanism. Lastly, we demonstrate that TAC102 lacks an N-terminal mitochondrial targeting sequence and requires sequences in the C-terminal part of the protein for its proper localization.