998 resultados para Redução de danos
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Descrito como o presente Privilégio de Invenção, refere-se a um processo para a desinfecção de superfícies condutoras ou semicondutoras, evitando a formação ou eliminando biofilmes preexistentes, para tanto, o presente processo é realizado por meio da aplicação de um potencial ou corrente elétricos sobre as referidas superfícies sendo vantajosa por dispensar o uso de agentes biocidas, bem como não necessitar do uso de materiais ou produtos abrasivos, ou seja, com a tecnologia proposta no presente processo é possível controlar ou eliminar a presença de biofilmes em sistema industriais sem adição de substâncias ao sistema, pois no presente processo o reagente é o elétron ou o campo elétrico formado por ele.
Resumo:
Contamination of Brazilian sugar-cane rum by ethyl carbamate, a potentially carcinogenic substance, is considered an obstacle to export of the beverage. Copper is involved in ethyl-carbamate-formation reactions, and the replacement thereof by stainless steel in distillation equipment, with the aim of preventing the formation of said compound, results in a beverage of poor sensory quality owing to the presence of dimethyl sulphide. A reduction in the concentration of sulphurated compounds in the final product may be achieved by the placing of a copper device (Patent No. 8206688) inside the dome of a stainless-steel alembic. It is therefore appropriate to verify the efficiency of using other forms of catalysts that, in addition to reducing ethyl-carbamate levels, are able, likewise, to trigger other catalytic actions that allow the production of a distillate of good sensory quality. Silver is the noble metal most used in industry and, on account of the catalytic properties thereof, it is ideal for use as a catalyst in oxidation reactions. The subject matter of the present invention comprises a method involving the use of silver in the distillation of alcoholic beverages, such as sugar-cane rum, which reduces ethyl-carbamate contamination of the end-product.
Resumo:
The Tahiti lime appears very susceptible to attack by post-harvest diseases, primarily by the fungi Penicillium and Phomopsis, and also because of its high sensitivity to storage at low temperatures. In order to reduce such damage, the present study aimed to verify the efficiency of heat treatment and disinfection of pathogens in the prevention of post-harvest chilling injury of this cultivar and to compare this treatment with other products using the conventional fungicides. The heat treatments were studied with hot-water temperatures ranging between 48 and 56° C. Water at room temperature was used as a control treatment. After treatment, the fruits were kept under cold temperature at 10° C and RH 90% for about 45 days. For comparison, three other treatments were carried out simultaneously, one using imazalil, one with baking soda, and a third with sodium carbonate, these three products being applied by baths in cold water. Two groups of fruit were evaluated, one treated by immersion considering pathogens coming from the field and another by inoculation with spores of the previously isolated pathogens. For the evaluation of physical and chemical parameters of fruits, determinations were made of the skin color, texture, weight loss, size, juice yield, soluble solids, total acidity and vitamin C content. The determination of the sensitivity of the fruit to cold was made by their exposure at temperatures inducing cold damage. The design was a randomized block design with nine treatments, analyzed by the Statgraphics statistical package. Heat treatments, especially at 52° C, were shown to be more promising in the control of pathogenic fungi and cold damage, surpassing the conventional fungicides. No changes were found in the intrinsic and extrinsic parameters in relation to the application of the different treatments.
Resumo:
The chemical control of the causal agent of citrus black spot (CBS) has been highlighted for the excessive required number of sprayings, considerably increasing citrus production costs. Improvements in the spray efficiency and reductions in the quantity of phytosanitary products have already been searched, but the results of that practice are not consistent yet for its use at commercial scale. Thus, the aim of the present study was to evaluate the interference of reduced spray volumes in black spot control in citrus fruits. The experiment was carried out in commercial citrus orchard with 16-year-old plants of 'Valencia' variety, during 2007 agricultural season. Treatments consisted of three spray volumes: 3.5; 4.5 and 8.5 liters.plant-1, applied with Arbus 2000/Export airblast sprayer with special manifold of hydraulic nozzles, using fungicides and periods recommended for the disease control, totaling four sprayings plus a control treatment (without spray). The disease incidence and severity were evaluated by visual diagrammatic scale of notes in two different periods (preharvest and harvest), at three plant heights (low, middle and top) and three horizontal sections (entrance, frontal and exit) in two sides of the plant. The fallen fruits were counted every fifteen days, for previously selected plants, from the beginning of maturation to harvest, and the production was quantified (kg.plant-1). The disease incidence and severity were significantly lower when sprayings were done with 8.5 liters.plant-1 in the first evaluation period (pre-harvest), but in the harvest period there were not differences between the same parameters when 4.5 or 8.5 liters.plant-1 were sprayed. None of those treatments reduced the disease on the top section of plants, compared to control. The plant sections with fruits more exposed to sun rays, top and right side of the plant, demonstrated higher disease incidence and severity. The volume reduction from 8.5 to 4.5 liters.plant-1 can be adopted for citrus orchards without damaging the CBS control level.
Resumo:
Pós-graduação em Aquicultura - FCAV
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Pós-graduação em Ciência e Tecnologia Animal - FEIS
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS