952 resultados para Real Jardín Botánico (Spain)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypervelocity impact of meteoroids and orbital debris poses a serious and growing threat to spacecraft. To study hypervelocity impact phenomena, a comprehensive ensemble of real-time concurrently operated diagnostics has been developed and implemented in the Small Particle Hypervelocity Impact Range (SPHIR) facility. This suite of simultaneously operated instrumentation provides multiple complementary measurements that facilitate the characterization of many impact phenomena in a single experiment. The investigation of hypervelocity impact phenomena described in this work focuses on normal impacts of 1.8 mm nylon 6/6 cylinder projectiles and variable thickness aluminum targets. The SPHIR facility two-stage light-gas gun is capable of routinely launching 5.5 mg nylon impactors to speeds of 5 to 7 km/s. Refinement of legacy SPHIR operation procedures and the investigation of first-stage pressure have improved the velocity performance of the facility, resulting in an increase in average impact velocity of at least 0.57 km/s. Results for the perforation area indicate the considered range of target thicknesses represent multiple regimes describing the non-monotonic scaling of target perforation with decreasing target thickness. The laser side-lighting (LSL) system has been developed to provide ultra-high-speed shadowgraph images of the impact event. This novel optical technique is demonstrated to characterize the propagation velocity and two-dimensional optical density of impact-generated debris clouds. Additionally, a debris capture system is located behind the target during every experiment to provide complementary information regarding the trajectory distribution and penetration depth of individual debris particles. The utilization of a coherent, collimated illumination source in the LSL system facilitates the simultaneous measurement of impact phenomena with near-IR and UV-vis spectrograph systems. Comparison of LSL images to concurrent IR results indicates two distinctly different phenomena. A high-speed, pressure-dependent IR-emitting cloud is observed in experiments to expand at velocities much higher than the debris and ejecta phenomena observed using the LSL system. In double-plate target configurations, this phenomena is observed to interact with the rear-wall several micro-seconds before the subsequent arrival of the debris cloud. Additionally, dimensional analysis presented by Whitham for blast waves is shown to describe the pressure-dependent radial expansion of the observed IR-emitting phenomena. Although this work focuses on a single hypervelocity impact configuration, the diagnostic capabilities and techniques described can be used with a wide variety of impactors, materials, and geometries to investigate any number of engineering and scientific problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

22 p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

27 p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The laminar to turbulent transition process in boundary layer flows in thermochemical nonequilibrium at high enthalpy is measured and characterized. Experiments are performed in the T5 Hypervelocity Reflected Shock Tunnel at Caltech, using a 1 m length 5-degree half angle axisymmetric cone instrumented with 80 fast-response annular thermocouples, complemented by boundary layer stability computations using the STABL software suite. A new mixing tank is added to the shock tube fill apparatus for premixed freestream gas experiments, and a new cleaning procedure results in more consistent transition measurements. Transition location is nondimensionalized using a scaling with the boundary layer thickness, which is correlated with the acoustic properties of the boundary layer, and compared with parabolized stability equation (PSE) analysis. In these nondimensionalized terms, transition delay with increasing CO2 concentration is observed: tests in 100% and 50% CO2, by mass, transition up to 25% and 15% later, respectively, than air experiments. These results are consistent with previous work indicating that CO2 molecules at elevated temperatures absorb acoustic instabilities in the MHz range, which is the expected frequency of the Mack second-mode instability at these conditions, and also consistent with predictions from PSE analysis. A strong unit Reynolds number effect is observed, which is believed to arise from tunnel noise. NTr for air from 5.4 to 13.2 is computed, substantially higher than previously reported for noisy facilities. Time- and spatially-resolved heat transfer traces are used to track the propagation of turbulent spots, and convection rates at 90%, 76%, and 63% of the boundary layer edge velocity, respectively, are observed for the leading edge, centroid, and trailing edge of the spots. A model constructed with these spot propagation parameters is used to infer spot generation rates from measured transition onset to completion distance. Finally, a novel method to control transition location with boundary layer gas injection is investigated. An appropriate porous-metal injector section for the cone is designed and fabricated, and the efficacy of injected CO2 for delaying transition is gauged at various mass flow rates, and compared with both no injection and chemically inert argon injection cases. While CO2 injection seems to delay transition, and argon injection seems to promote it, the experimental results are inconclusive and matching computations do not predict a reduction in N factor from any CO2 injection condition computed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is often difficult to define ‘water quality’ with any degree of precision. One approach is that suggested by Battarbee (1997) and is based on the extent to which individual lakes have changed compared with their natural ‘baseline’ status. Defining the base-line status of artificial lakes and reservoirs however, is, very difficult. In ecological terms, the definition of quality must include some consideration of their functional characteristics and the extent to which these characteristics are self-sustaining. The challenge of managing lakes in a sustainable way is particularly acute in semi-arid, Mediterranean countries. Here the quality of the water is strongly influenced by the unpredictability of the rainfall as well as year-to-year variations in the seasonal averages. Wise management requires profound knowledge of how these systems function. Thus a holistic approach must be adopted and the factors influencing the seasonal dynamics of the lakes quantified over a range of spatial and temporal scales. In this article, the authors describe some of the ways in which both long-term and short-term changes in the weather have influenced the seasonal and spatial dynamics of phytoplankton in El Gergal, a water supply reservoir situated in the south of Spain. The quality of the water stored in this reservoir is typically very good but surface blooms of algae commonly appear during warm, calm periods when the water level is low. El Gergal reservoir is managed by the Empresa Municipal de Abastecimiento y Saneamiento (EMASESA) and supplies water for domestic, commercial and industrial use to an area which includes the city of Seville and twelve of its surrounding towns (ca. 1.3 million inhabitants). El Gergal is the last of two reservoirs in a chain of four situated in the Rivera de Huelva basin, a tributary of the Guadalquivir river. It was commissioned by EMASESA in 1979 and since then the company has monitored its main limnological parameters on, at least, a monthly basis and used this information to improve the management of the reservoir. As a consequence of these intensive studies the physical, chemical and biological information acquired during this period makes the El Gergal database one of the most complete in Spain. In this article the authors focus on three ‘weather-related’ effects that have had a significant impact on the composition and distribution of phytoplankton in El Gergal: (i) the changes associated with severe droughts; (ii) the spatial variations produced by short-term changes in the weather; (iii) the impact of water transfers on the seasonal dynamics of the dinoflagellate Ceratium.