888 resultados para Rayons UV


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Generally, the magnitude of pollutant emissions from diesel engines is ultimately coupled to the structure of fuel molecules. The presence of oxygen, level of unsaturation and the carbon chain length of respective molecules influence the combustion chemistry. It is speculated that increased oxygen content in the fuel may lead to the increased oxidative potential (Stevanovic, S. 2013). Also, upon the exposure to UV and ozone in the atmosphere, the chemical composition of the exhaust is changed. The presence of an oxidant and UV is triggering the cascade of photochemical reactions as well as the partitioning of semi-volatile compounds between the gas and particle phase. To gain an insight into the relationship between the molecular structures of the esters, their volatile organic content and the potential toxicity of diesel exhaust particulate matter, measurements were conducted on a modern common rail diesel engine. This research also investigates the contribution of atmospheric conditions on the transfer of semi-volatile fraction of diesel exhaust from the gas phase to the particle phase and the extent to which semi-volatile compounds (SVOCs) are related to the oxidative potential, expressed through the concentration of reactive oxygen species (ROS) (Stevanovic, S. 2013)...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high performance liquid chromatographic method for the simultaneous determination of five organochlorine pesticides (aldrin, p,p’-DDT, dieldrin, endrin, and heptachlor) was developed. The method was used to determine the levels of these pesticides in medicinal plant samples. Analysis was carried out using a Merck LiChrospher 100 RP C18 (5 μm) column with a gradient solvent system of acetonitrile-water and PDA UV detection (224 nm). Quantification was carried out by the external standard method. The limit of detection for the utilized method was below the local legal limits (ANZFA) for similar plant materials for all 5 pesticides excepting endrin. Medicinal plant extracts were further analyzed by conventional GC-ECD and GC-NPD means using SPE and GPC cleanup as required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar keratoses (SKs) are induced by exposure to UV radiation and are capable of undergoing transformation to squamous cell carcinoma (SCC).1 The two main factors influencing the occurrence of SK are the sensitivity of the skin to sunlight and the total duration of solar exposure. These factors are responsible for the high incidence of SK in Australia. Although the influence of genetic factors is not defined, there is evidence that the gene encoding the enzyme, glutathione S-transferase, may be implicated in cancer predisposition and therefore SK. Glutathione S-transferase Mu-1 (GSTM1) is an isoenzyme involved in the detoxification of carcinogens. The GSTM1 protein is completely absent in approximately 50% of white persons. This absence is caused by a homozygous gene deletion on chromosome 1p resulting in a null genotype.2 Katoh3 showed that the frequency of the GSTM1 null genotype was significantly higher in 85 patients with urothelial cancer (61.2%; p < 0.05), suggesting that the null genotype may increase cancer susceptibility. This finding was supported by Lafuente et al.4 who found evidence that persons who lack the GSTM1 gene have approximately twice the chance of experiencing malignant melanoma. Further research in the United Kingdom found that patients with two or more skin tumors of different types, basal cell carcinoma (BCC) and SCC, had a significantly higher frequency of GSTM1 null genotypes than controls (71%; p = 0.033). However the GSTM1 genotype in patients with only SCC was not excessive in this population.5 Persons residing in northern Australia have the highest incidence of nonmelanoma skin cancer (SCC and BCC) in the world6 and receive far greater solar exposure than persons residing in the United Kingdom. It is possible that the GSTM1 null genotype may affect susceptibility to SK, which may act as SCC precursors, in Australians exposed to these high levels of solar radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skin cancer is one of the most commonly occurring cancer types, with substantial social, physical, and financial burdens on both individuals and societies. Although the role of UV light in initiating skin cancer development has been well characterized, genetic studies continue to show that predisposing factors can influence an individual's susceptibility to skin cancer and response to treatment. In the future, it is hoped that genetic profiles, comprising a number of genetic markers collectively involved in skin cancer susceptibility and response to treatment or prognosis, will aid in more accurately informing practitioners' choices of treatment. Individualized treatment based on these profiles has the potential to increase the efficacy of treatments, saving both time and money for the patient by avoiding the need for extensive or repeated treatment. Increased treatment responses may in turn prevent recurrence of skin cancers, reducing the burden of this disease on society. Currently existing pharmacogenomic tests, such as those that assess variation in the metabolism of the anticancer drug fluorouracil, have the potential to reduce the toxic effects of anti-tumor drugs used in the treatment of non-melanoma skin cancer (NMSC) by determining individualized appropriate dosage. If the savings generated by reducing adverse events negate the costs of developing these tests, pharmacogenomic testing may increasingly inform personalized NMSC treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents a method for making highly porous biodegradable scaffold that may ultimately be used for tissue engineering. Poly(L-lactic-co-1-caprolactone) acid (70:30) (PLCL) scaffold was produced using the solvent casting/leaching out method, which entails dissolving the polymer and adding a porogen that is then leached out by immersing the scaffold in distillated water. Tensile tests were performed for three types of scaffolds, namely pre-wetted, dried, and UV-irradiated scaffolds and their mechanical properties were measured. The prewetted PLCL scaffold possessed a modulus of elasticity 0.92+0.09 MPa, a tensile strength of 0.12+0.03 MPa and an ultimate strain of 23+5.3%. No significant differences in the modulus elasticity, tensile strength, nor ultimate strain were found between the pre-wetted, dried, and UV irradiated scaffolds. The PLCL scaffold was seeded by human fibroblasts in order to evaluate its biocompatibility by Alamar bluew assays. After 10 days of culture, the scaffolds showed good biocompatibility and allowed cell proliferation. However, the fibroblasts stayed essentially at the surface. This study shows the possibility to use the PLCL scaffold in dynamic mechanical conditions for tissue engineering

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of copolymers of trimethylene carbonate (TMC) and l-lactide (LLA) were synthesized and evaluated as scaffolds for the production of artificial blood vessels. The polymers were end-functionalized with acrylate, cast into films, and cross-linked using UV light. The mechanical, degradation, and biocompatibility properties were evaluated. High TMC polymers showed mechanical properties comparable to human arteries (Young’s moduli of 1.2–1.8 MPa and high elasticity with repeated cycling at 10% strain). Over 84 days degradation in PBS, the modulus and material strength decreased gradually. The polymers were nontoxic and showed good cell adhesion and proliferation over 7 days using human mesenchymal stem cells. When implanted into the rat peritoneal cavity, the polymers elicited formation of tissue capsules composed of myofibroblasts, resembling immature vascular smooth muscle cells. Thus, these polymers showed properties which were tunable and favorable for vascular tissue engineering, specifically, the growth of artificial blood vessels in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequent in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1P29S) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1P29S showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical and electrocatalytic behaviour of silver nanoprisms, nanospheres and nanocubes of comparable size in an alkaline medium have been investigated to ascertain the shape dependent behaviour of silver nanoparticles, which are an extensively studied nanomaterial. The nanomaterials were synthesised using chemical methods and characterised with UV-visible spectroscopy, transmission electron microscopy and X-ray diffraction. The nanomaterials were immobilised on a substrate glassy carbon electrode and characterised by cyclic voltammetry for their surface oxide electrochemistry. The electrocatalytic oxidation of hydrazine and formaldehyde and the reduction of hydrogen peroxide were studied by performing cyclic voltammetric and chronoamperometric experiments for both the nanomaterials and a smooth polycrystalline macrosized silver electrode. In all cases the nanomaterials showed enhanced electrocatalytic activity over the macro-silver electrode. Significantly, the silver nanoprisms that are rich in hcp lamellar defects showed greater activity than nanospheres and nanocubes for all reactions studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the reaction of semiconductor microrods of phase I copper 7,7,8,8-tetracyanoquinodimethane (CuTCNQ) with KAuBr4 in acetonitrile is reported. It was found that the reaction is redox in nature and proceeds via a galvanic replacement mechanism in which the surface of CuTCNQ is replaced with metallic gold nanoparticles. Given the slight solubility of CuTCNQ in acetonitrile, two competing reactions, namely CuTCNQ dissolution and the redox reaction with KAuBr4, were found to operate in parallel. An increase in the surface coverage of CuTCNQ microrods with gold nanoparticles occurred with an increased KAuBr4 concentration in acetonitrile, which also inhibited CuTCNQ dissolution. The reaction progress with time was monitored using UV−visible, FT-IR, and Raman spectroscopy as well as XRD and EDX analysis, and SEM imaging. The CuTCNQ/Au nanocomposites were investigated for their photocatalytic properties, wherein the destruction of Congo red, an organic dye, by simulated solar light was found dependent on the surface coverage of gold nanoparticles on the CuTCNQ microrods. This method of decorating CuTCNQ may open the possibility of modifying this and other metal-TCNQ charge transfer complexes with a host of other metals which may have significant applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of organic semiconducting materials based on silver and copper-TCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane) and their fluorinated analogues has received a significant amount of attention due to their potential use in organic electronic applications. However, there is a scarcity in the identification of different applications for which these interesting materials may be suitable candidates. In this work, we address this by investigating the catalytic properties of such materials for the electron transfer reaction between ferricyanide and thiosulphate ions in aqueous solution, which to date has been almost solely limited to metallic nanomaterials. Significantly it was found that all the materials investigated, namely CuTCNQ, AgTCNQ, CuTCNQF4 and AgTCNQF4, were catalytically active and, interestingly, the fluorinated analogues were superior. AgTCNQF4 demonstrated the highest activity and was tested for its stability and re-usability for up to 50 cycles without degradation in performance. The catalytic reaction was monitored via UV-vis spectroscopy and open circuit potential versus time measurements, as well as an investigation of the transport properties of the films via electrochemical impedance spectroscopy. It is suggested that morphology and bulk conductivity are not the limiting factors, but rather the balance between the accumulated surface charge from electron injection via thiosulphate ions on the catalyst surface and transfer to the ferricyanide ions which controls the reaction rate. The facile fabrication of re-usable surface confined organic materials that are catalytically active may have important uses for many more electron transfer reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complex [1,2-bis­(di-tert-butyl­phosphan­yl)ethane-[kappa]2P,P']di­iodido­nickel(II), [NiI2(C18H40P2] or (dtbpe-[kappa]2P)NiI2, [dtbpe is 1,2-bis­(di-tert-butyl­phosphan­yl)ethane], is bright blue-green in the solid state and in solution, but, contrary to the structure predicted for a blue or green nickel(II) bis­(phos­phine) complex, it is found to be close to square planar in the solid state. The solution structure is deduced to be similar, because the optical spectra measured in solution and in the solid state contain similar absorptions. In solution at room temperature, no 31P{1H} NMR resonance is observed, but the very small solid-state magnetic moment at temperatures down to 4 K indicates that the weak paramagnetism of this nickel(II) complex can be ascribed to temperature independent paramagnetism, and that the complex has no unpaired electrons. The red [1,2-bis­(di-tert-butyl­phosphan­yl)ethane-[kappa]2P,P']di­chlorido­nickel(II), [NiCl2(C18H40P2] or (dtbpe-[kappa]2P)NiCl2, is very close to square planar and very weakly paramagnetic in the solid state and in solution, while the maroon [1,2-bis­(di-tert-butyl­phosphan­yl)ethane-[kappa]2P,P']di­bromido­nickel(II), [NiBr2(C18H40P2] or (dtbpe-[kappa]2P)NiBr2, is isostructural with the diiodide in the solid state, and displays paramagnetism inter­mediate between that of the dichloride and the diiodide in the solid state and in solution. Density functional calculations demonstrate that distortion from an ideal square plane for these complexes occurs on a flat potential energy surface. The calculations reproduce the observed structures and colours, and explain the trends observed for these and similar complexes. Although theoretical investigation identified magnetic-dipole-allowed excitations that are characteristic for temperature-independent paramagnetism (TIP), theory predicts the mol­ecules to be diamagnetic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Problem Queensland has the highest rates of skin cancer in the world, even after wide-ranging public programs promoting sun safety awareness. To-date, public awareness campaigns on the dangers of excessive sun exposure have been highly successful. For adolescents, however, where a significant amount of lifetime sun exposure occurs, perilous exposure still ensues, despite awareness of the risks. New frontier approaches are required to target this key audience cluster, for this significant national problem. Approach For the majority of adolescents, being part of a collective norm defines their visual, attitudinal and behavioural actions and fashion has been validated as one of the most powerful forces that can form, shape and bolster these norms. Considering clothing is the easiest method to limit the amount of skin exposed to UV, fashion (in its many subtle, yet influential guises) is proposed as an avenue to advance positive sun safe practices for adolescents. Through an action-led methodology, this research explores the potential of fashion, as one of the key parts of a complex equation, to be a prime driver to facilitate sun safety for adolescents. Findings This paper advocates that fashion, as distinguishable from clothing, has the potential to positively influence sun protective behaviour. The findings go further and recommend the use of fashion as a stealth driver for sun safety advancement, for adolescents in particular, via shifts in norms of beauty and targeted generational communication strategies. This frontier approach has the potential to significantly reduce risky sun exposure in adolescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is the first study to investigate the associations between sun exposure and folate degradation in a group of childbearing age women in a high UV environment. It examined whether the degree of sun exposure experienced by women influenced blood folate levels following a period of folic acid supplementation and found a strong significant relationship between increased sun exposure and folate degradation. This relationship has strong implications for public health and the thesis has provided a foundation for further research in this area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Outdoor workers are at high risk of harmful ultraviolet radiation exposure and are identified as an at risk group for the development of skin cancer. This systematic evidence based review provides an update to a previous review published in 2007 about interventions for the prevention of skin cancer in outdoor workers. RESULTS: This review includes interventions published between 2007-2012 and presents findings about sun protection behaviours and/or objective measures of skin cancer risk. Six papers met inclusion criteria and were included in the review. Large studies with extended follow-up times demonstrated the efficacy of educational and multi-component interventions to increase sun protection, with some higher use of personal protective equipment such as sunscreen. However, there is less evidence for the effectiveness of policy or specific intervention components. CONCLUSIONS: Further research aimed at improving overall attitudes towards sun protection in outdoor workers is needed to provide an overarching framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: This study investigated the effect of chemical conjugation of the amino acid L-leucine to the polysaccharide chitosan on the dispersibility and drug release pattern of a polymeric nanoparticle (NP)-based controlled release dry powder inhaler (DPI) formulation. Methods: A chemical conjugate of L-leucine with chitosan was synthesized and characterized by Infrared (IR) Spectroscopy, Nuclear Magnetic Resonance (NMR) Spectroscopy, Elemental Analysis and X-ray Photoelectron Spectroscopy (XPS). Nanoparticles of both chitosan and its conjugate were prepared by a water-in-oil emulsification – glutaraldehyde cross-linking method using the antihypertensive agent, diltiazem (Dz) hydrochloride as the model drug. The surface morphology and particle size distribution of the nanoparticles were determined by Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS). The dispersibility of the nanoparticle formulation was analysed by a Twin Stage Impinger (TSI) with a Rotahaler as the DPI device. Deposition of the particles in the different stages was determined by gravimetry and the amount of drug released was analysed by UV spectrophotometry. The release profile of the drug was studied in phosphate buffered saline at 37 ⁰C and analyzed by UV spectrophotometry. Results: The TSI study revealed that the fine particle fractions (FPF), as determined gravimetrically, for empty and drug-loaded conjugate nanoparticles were significantly higher than for the corresponding chitosan nanoparticles (24±1.2% and 21±0.7% vs 19±1.2% and 15±1.5% respectively; n=3, p<0.05). The FPF of drug-loaded chitosan and conjugate nanoparticles, in terms of the amount of drug determined spectrophotometrically, had similar values (21±0.7% vs 16±1.6%). After an initial burst, both chitosan and conjugate nanoparticles showed controlled release that lasted about 8 to 10 days, but conjugate nanoparticles showed twice as much total drug release compared to chitosan nanoparticles (~50% vs ~25%). Conjugate nanoparticles also showed significantly higher dug loading and entrapment efficiency than chitosan nanoparticles (conjugate: 20±1% & 46±1%, chitosan: 16±1% & 38±1%, n=3, p<0.05). Conclusion: Although L-leucine conjugation to chitosan increased dispersibility of formulated nanoparticles, the FPF values are still far from optimum. The particles showed a high level of initial burst release (chitosan, 16% and conjugate, 31%) that also will need further optimization.