998 resultados para Rat Delivery
Resumo:
Rat pancreatic alpha- and beta-cells are critically dependent on hormonal signals generating cyclic AMP (cAMP) as a synergistic messenger for nutrient-induced hormone release. Several peptides of the glucagon-secretin family have been proposed as physiological ligands for cAMP production in beta-cells, but their relative importance for islet function is still unknown. The present study shows expression at the RNA level in beta-cells of receptors for glucagon, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide I(7-36) amide (GLP-I), while RNA from islet alpha-cells hybridized only with GIP receptor cDNA. Western blots confirmed that GLP-I receptors were expressed in beta-cells and not in alpha-cells. Receptor activity, measured as cellular cAMP production after exposing islet beta-cells for 15 min to a range of peptide concentrations, was already detected using 10 pmol/l GLP-I and 50 pmol/l GIP but required 1 nmol/l glucagon. EC50 values of GLP-I- and GIP-induced cAMP formation were comparable (0.2 nmol/l) and 45-fold lower than the EC50 of glucagon (9 nmol/l). Maximal stimulation of cAMP production was comparable for the three peptides. In purified alpha-cells, 1 nmol/l GLP-I failed to increase cAMP levels, while 10 pmol/l to 10 nmol/l GIP exerted similar stimulatory effects as in beta-cells. In conclusion, these data show that stimulation of glucagon, GLP-I, and GIP receptors in rat beta-cells causes cAMP production required for insulin release, while adenylate cyclase in alpha-cells is positively regulated by GIP.
Resumo:
PURPOSE: Abdominal aortic aneurysms (AAAs) expand because of aortic wall destruction. Enrichment in Vascular Smooth Muscle Cells (VSMCs) stabilizes expanding AAAs in rats. Mesenchymal Stem Cells (MSCs) can differentiate into VSMCs. We have tested the hypothesis that bone marrow-derived MSCs (BM-MSCs) stabilizes AAAs in a rat model. MATERIAL AND METHODS: Rat Fischer 344 BM-MSCs were isolated by plastic adhesion and seeded endovascularly in experimental AAAs using xenograft obtained from guinea pig. Culture medium without cells was used as control group. The main criteria was the variation of the aortic diameter at one week and four weeks. We evaluated the impact of cells seeding on inflammatory response by immunohistochemistry combined with RT-PCR on MMP9 and TIMP1 at one week. We evaluated the healing process by immunohistochemistry at 4 weeks. RESULTS: The endovascular seeding of BM-MSCs decreased AAA diameter expansion more powerfully than VSMCs or culture medium infusion (6.5% ± 9.7, 25.5% ± 17.2 and 53.4% ± 14.4; p = .007, respectively). This result was sustained at 4 weeks. BM-MSCs decreased expression of MMP-9 and infiltration by macrophages (4.7 ± 2.3 vs. 14.6 ± 6.4 mm(2) respectively; p = .015), increased Tissue Inhibitor Metallo Proteinase-1 (TIMP-1), compared to culture medium infusion. BM-MSCs induced formation of a neo-aortic tissue rich in SM-alpha active positive cells (22.2 ± 2.7 vs. 115.6 ± 30.4 cells/surface units, p = .007) surrounded by a dense collagen and elastin network covered by luminal endothelial cells. CONCLUSIONS: We have shown in this rat model of AAA that BM-MSCs exert a specialized function in arterial regeneration that transcends that of mature mesenchymal cells. Our observation identifies a population of cells easy to isolate and to expand for therapeutic interventions based on catheter-driven cell therapy.
Resumo:
La douleur neuropathique est une forme de douleur chronique apparaissant suite à des lésions du système nerveux somato-sensoriel. Caractérisée par une plasticité neuronale inadapté, elle est très souvent intense, invalidante, associe des symptômes comme l'allodynie ou l' hyperalgésie et reste difficile à traiter avec les agents thérapeutiques actuels. Le thème de mon travail de thèse se concentre sur des mécanismes moléculaires de modulation des canaux sodiques voltage-dépendants suite à une lésion du nerf périphérique. Dans l'article présenté en annexe, j'ai focalisé mon travail sur une protéine, Nedd4-2, qui est une ligase ubiquitine. Elle a pour rôle de réguler et d'internaliser dans la cellule des protéines membranaires dont les canaux sodiques. Suite aux lésions du système nerveux périphérique, il existe une hyperexcitabilité neuronale engendrée notamment par un surplus et une dysrégulation des canaux sodiques à la membrane cellulaire. Dans 1 'hypothèse que l'ubiquitine ligase Nedd4-2 soit présente dans les neurones sensitifs primaires et ait un rôle dans la régulation des canaux sodiques, nous avons identifié cette protéine dans les neurones nociceptifs primaires du rat. En utilisant des techniques de Western Blot et d'immunohistochimie, j'ai trouvé que Nedd4-2 est présente dans presque 50% des neurones du ganglion spinal et ces neurones sont principalement des neurones nociceptifs. Dans un modèle expérimental de douleur neuropathique (SN I, pour spared nerve injury), Nedd4-2 se retrouve significativement diminuée dans le tissu du ganglion spinal. J'ai également investigué 1' expression de 2 isoformes des canaux sodiques connues pour leur implication dans la douleur, Navl.7 et Navl.8, et ces 2 isoformes se retrouvent dans les mêmes neurones que Nedd4-2. La caractérisation détaillée est décrite dans le manuscrit: «Neuronal expression of the ubiquitin ligase Nedd4-2 in rat dorsal root ganglia: modulation in the SNI model of neuropathic pain; Cachemaille M, Laedermann CJ, Pertin M, Abriel H, Gasselin RD, Decosterd 1.» Les résultats obtenus indiquent que Nedd4-2, en étant downrégulé après une lésion nerveuse, pourrait ainsi contribuer à une augmentation des canaux sodiques fonctionnels à la membrane. Ainsi Nedd4-2 pourrait être proposée comme cible thérapeutique de manière alternative aux bloqueurs de canaux sodiques. Ce travail a permis l'initiation d'autres expériences. J'ai contribué activement à la construction de vecteurs viraux type adéno-associé recombinant (rAA V2/6) et surexprimé la protéine in vivo dans les ganglions spinaux. Cette partie de mon travail se trouve intégrée dans d'autres travaux de mon laboratoire d'accueil qui a pu démontrer les effets fonctionnels de cette approche sur les courants sodiques enregistrés par électrophysiologie et une diminution de la douleur neuropathique chez la souris. - Abstract-Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltagegated sodium channels (VGSCs), which gives rise toallodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC a-subunits (Nav), in particular Nav1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Nav1.7 and Nav1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in shamoperated animals, seven days after SNI and 48 h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7± 2.7% and 55.0 ±3.6% of Nedd4-2-positive cells are co-labeled with Nav1.7 and Nav1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9± 1.9% to 33.5± 0.7% (p < 0.01) and the total Nedd4-2 protein to 44%± 0.13% of its basal level (p <0.01, n = 4 animals in each group, mean± SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Navs involved in the hyperexcitability associated with peripheral nerve injuries.
Resumo:
Numerous drug delivery systems (DDSs) can be used as intraocular tools to provide a sustained and calibrated release for a specific drug. Great progress has been made on the design, biocompatibility, bioavailability, and efficacy of DDSs. Although several of them are undergoing clinical trials, a few are already on the market and could be of a routine use in clinical practice. Moreover, miniaturization of the implants makes them less and less traumatic for the eye tissues and some DDSs are now able to target certain cells or tissues specifically. An overview of ocular implants with therapeutic application potentials is provided.
Resumo:
Streptococcus tigurinus is responsible for systemic infections in humans including infective endocarditis. We investigated whether the invasive trait of S. tigurinus in humans correlated with an increased ability to induce IE in rats. Rats with catheter-induced aortic vegetations were inoculated with 10⁴ CFU/ml of either of four S. tigurinus strains AZ_3a(T), AZ_4a, AZ_8 and AZ_14, isolated from patients with infective endocarditis or with the well known IE pathogen Streptococcus gordonii (Challis). Aortic infection was assessed after 24 h. S. tigurinus AZ_3a(T), AZ_4a and AZ_14 produced endocarditis in ≥80% of rats whereas S. gordonii produced endocarditis in only 33% of animals (P<0.05). S. tigurinus AZ_8 caused vegetation infection in 56% of the animals. The capacity of S. tigurinus to induce aortic infection was not related to their ability to bind extracellular matrix proteins (fibrinogen, fibronectin or collagen) or to trigger platelet aggregation. However, all S. tigurinus isolates showed an enhanced resistance to phagocytosis by macrophages and two of them had an increased ability to enter endothelial cells, key attributes of invasive streptococcal species.
Resumo:
The patterns of development of the vestibular nuclei (VN) and their main connections involving glutamate neurotransmission offer a good model for studying the function of the glial-derived neuromodulator D-serine in synaptic plasticity. In this study we show that D-serine is present in the VN and we analyzed its distribution and the levels of expression of serine racemase and D-amino acid oxidase (D-AAO) at different stages of postnatal (P) development. From birth to P21, high levels of D-serine were detected in glial cells and processes in all parts of the VN. This period corresponded to high expression of serine racemase and low expression of D-AAO. On the other hand, in the mature VN D-serine displayed very low levels and was mainly localized in neuronal cell bodies and dendrites. This drop of D-serine in adult stages corresponded to an increasing expression of D-AAO at mature stages. High levels of glial D-serine during the first 3 weeks of postnatal development correspond to an intense period of plasticity and synaptogenesis and maturation of VN afferents, suggesting that D-serine could be involved in these phenomena. These results demonstrate for the first time that changes in D-serine levels and distribution occur during postnatal development in the central nervous system. The strong decrease of D-serine levels and the glial-to-neuronal switch suggests that D-serine may have distinct functional roles depending on the developmental stage of the vestibular network.
Resumo:
Three pyrenyl-arene ruthenium complexes (M(1)-M(3)) of the general formula [Ru(η(6)-arene-pyrenyl)Cl(2)(pta)] (pta = 1,3,5-triaza-7-phosphaadamantane) have been synthesised and characterised. Prior to the coordination to ruthenium, pyrene was connected to the arene ligand via an alkane chain containing different functional groups: ester (L(1)), ether (L(2)) and amide (L(3)), respectively. Furthermore, the pyrenyl moieties of the M(n) complexes were encapsulated within the hydrophobic cavity of the water soluble metalla-cage, [Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+) (tpt = 2,4,6-tri-(pyridin-4-yl)-1,3,5-triazine; donq = 5,8-dioxydo-1,4-naphthoquinonato), while the arene ruthenium end was pointing out of the cage, thus giving rise to the corresponding host-guest systems [M(n)⊂Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+) ([M(n)⊂cage](6+)). The antitumor activity of the pyrenyl-arene ruthenium complexes (M(n)) and the corresponding host-guest systems [M(n)⊂cage][CF(3)SO(3)](6) were evaluated in vitro in different types of human cancer cell lines (A549, A2780, A2780cisR, Me300 and HeLa). Complex M(2), which contains an ether group within the alkane chain, demonstrated at least a 10 times higher cytotoxicity than the reference compound [Ru(η(6)-p-cymene)Cl(2)(pta)] (RAPTA-C). All host-guest systems [M(n)⊂cage](6+) showed good anticancer activity with IC(50) values ranging from 2 to 8 μM after 72 h exposure. The fluorescence of the pyrenyl moiety allowed the monitoring of the cellular uptake and revealed an increase of uptake by a factor two of the M(2) complex when encapsulated in the metalla-cage [Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+).
Resumo:
Subplate neurons are among the earliest born cells of the neocortex and play a fundamental role in cortical development, in particular in the formation of thalamocortical connections. Subplate abnormalities have been described in several neuropathological disorders including schizophrenia, autism and periventricular eukomalacia (Eastwood and Harrison, Schizophr Res, 79, 2005; McQuillen and Ferriero, Brain Pathol, 15, 2005). We have identified and confirmed a range of specific markers for murine subplate using a microarray based approach and found that different subplate subpopulations are characterized by distinct expression patterns of these genes (Hoerder-Suabedissen et al., Cereb Cortex, 19, 2009). In this current study, we are making use of these markers to investigate neuropathological changes of the subplate after cerebral hypoxia-ischemia (HI) in the neonatal rat. First, we characterized the expression of a number of murine subplate markers in the postnatal rat using immunohistochemistry and in situ hybridization. While several genes (Nurr1, Cplx3, Ctgf and Tmem163) presented very similar expression patterns as in the mouse, others (Ddc, MoxD1 and TRH) were completely absent in the rat cortex. This finding suggests important differences in the subplate populations of these two rodent species. In a neonatal rat model of HI, selective vulnerability of subplate has been suggested using BrdU birthdating methods (McQuillen et al., J Neurosci, 15, 2003). We hypothesized that certain subplate subpopulations could be more susceptible than others and analyzed the above subplate markers in a similar yet slightly milder HI model. Two-day old male rat pups underwent permanent occlusion of the right common carotid artery followed by a period of hypoxia (6% O2, 1.5h or 2h) and were analyzed six days later. Preliminary counts on three subplate subpopulations (Nurr1+, Cplx3+ and Ctgf+ cells, respectively) showed similar reductions in cell numbers for all three groups. In addition, we found that the majority of cases which show changes in the subplate also exhibit lesions in the deep cortical layers VI (identified by FoxP2 expression) and sometimes even layer V (revealed by Er81 immunoreactivity), which questions the selective susceptibility of subplate over other cortical layers under the conditions we used in our model. Supported by MRC, FMO holds a Berrow Scholarship, Lincoln College, Oxford.
Resumo:
BACKGROUND: Complications associated with intrathecal pumps may be linked to the surgical procedure, the implanted device, or the medication itself.¦CASE REPORTS: Three patients treated chronically with intrathecal clonidine presented with clonidine overdose due to inadvertent extravasation during the refilling procedure. All patients experienced loss of consciousness and severe systemic hypertension that required aggressive parenteral treatment.¦DISCUSSION: Clonidine is an alpha-2 agonist with a nearly 100% bioavailability after oral or rectal administration. With high plasma concentration secondary to massive systemic overdose, the specificity for the alpha-2 receptor is lost and an alpha-1 agonist activity predominates and causes marked hypertension. Management of clonidine overdose consists of supportive therapy guided by signs and symptoms.¦CONCLUSION: Inadvertent injection into the subcutaneous pocket rather than the reservoir is rare but very dangerous as the drug cannot be retrieved and massive doses are involved. Signs and symptoms of systemic overdose with drugs commonly used in implanted drugs delivery system should be well known to ensure early diagnosis and treatment.
Resumo:
Photodynamic therapy (PDT) has been used as an adjunct to cytoreductive surgery in patients with malignant pleura mesothelioma (MPM). However, it was associated with substantial side effects and found to be only of modest clinical benefit. In contrast, Visudyne®-mediated low-dose PDT has been shown to selectively increase the concentration of macromolecular cytostatic compounds in various tumors grown subpleurally on rodent lungs. Consequently, it was thought that PDT-assisted enhanced tumor penetration for cytostatic agents might be better suited to achieve additional tumor control after cytoreductive surgery for mesothelioma. This effect seems to be mainly related to PDT-mediated modulations of tumor vessels which improve the distribution of circulating, systemically administered chemotherapeutic macromolecular agents. However, the mechanisms involved and the optimization of this effect for therapeutic implications remain to be solved. By using the dorsal skin fold chamber method we demonstrated that both angiogenesis and microcirculation of human mesothelioma xenografts can be continuously assessed in vivo by intravital microscopy. We described a new, simple, reproducible and reliable scoring system for the assessment of tumor angiogenesis and microcirculation in this model, thereby allowing the quantitative description of the neo-vascular network development while avoiding a complicated technical setup. This method can serve as a useful tool for the assessment of novel vessel-targeted therapies against MPM. We then applied this newly established model so as to elucidate the underlying mechanisms of PDT-induced extravasation of macromolecular compounds across the endothelial barrier in tumors and surrounding normal tissue. We found that low-dose PDT selectively enhanced the uptake of macromolecular compounds in human mesothelioma xenografts compared to surrounding normal tissue. Interestingly, this increase of effective permeability of tumor vasculature was not related to the inflammatory stimuli generated by PDT such as the mobilization of leucocytes and their adhesion and penetration of the injured vessel wall. We then used the model for optimizing the drug-light conditions of low- dose PDT in order to obtain maximal leakage of the macromolecular compounds in the tumor with minimal uptake in normal surrounding tissue and we were able to identify such a therapeutic window. With these optimized PDT treatment conditions, we assessed the therapeutic effect of this new treatment concept in vivo by measuring tumor growth rates on subcutaneously grown mesothelioma xenografts in nude mice after low-dose PDT of the tumors following systemically administered liposomal (macromolecular) cisplatin, a cytostatic compound commonly used in clinical practice. We were able to demonstrate that low-dose PDT with optimized drug-light conditions combined with systemic chemotherapy indeed resulted in a reduction in tumor growth compared to chemotherapy or PDT alone. In conclusion, our work demonstrates that low-dose PDT may selectively enhance the uptake of macromolecular cytostatic drugs in superficially growing tumors such as mesotheliomas and opens new perspectives for the treatment of these diseases. - Les effets cytotoxiques de la thérapie photodynamique (PDT) sur le mésothéliome pleural malin (MPM) n'ont pas apporté de bénéfice clinique significatif. Toutefois, une application innovante non cytotoxique de la PDT serait la bienvenue en supplément des chimiothérapies pour améliorer le contrôle local de la tumeur. Le prétraitement des néovaisseaux tumoraux par une PDT à bas régime, qui améliorerait la distribution d'une chimiothérapie administrée par voie systémique de façon concomitante, a attiré une attention particulière pour de futures applications cliniques. Toutefois, les mécanismes impliqués dans cet événement et les implications thérapeutiques de ces changements physiopathologiques restent non résolus. Dans cette thèse, nous avons observé en premier que l'angiogenèse et la microcirculation dans les xénogreffes de mésothéliomes humains peuvent être observées et analysées in vivo par microscopie intravitale. Le nouveau système de score appliqué pour l'évaluation de l'angiogenèse et de la microcirculation tumorale dans cette étude est une méthode simple, reproductible et fiable servant à décrire de manière quantitative le réseau néo-vasculaire en développement, tout en évitant d'utiliser une installation technique compliquée. Ce modèle sert de nouvel outil pour l'évaluation des thérapies anti-vasculaires dirigées contre le MPM. Le modèle animal nouvellement établi a alors été utilisé pour élucider les mécanismes sous-jacents de Γ extravasation d'agents macromoléculaires induite par PDT dans les vaisseaux tumoraux et normaux. Nous avons trouvé que la PDT à fable dose améliore la distribution ciblée de drogues macromoléculaires dans des greffes de mésothéliome humain, de manière sélective pour la tumeur. La perméabilité vasculaire tumorale n'est pas influencée par les stimuli inflammatoires générés par la PDT, ce qui joue un rôle important dans la sélectivité de notre photodynamic drug delivery. Ensuite, nous avons recherché la fenêtre thérapeutique optimale de la PDT pour obtenir une accumulation sélective du colorant macromoléculaire dans le tissu tumoral ainsi qu'une efficacité de la PDT combinée avec une chimiothérapie macromoléculaire sur la croissance tumorale. Nous avons démontré que la PDT à faible dose combinée avec une administration systémique de cisplatine liposomale mène à un ralentissement de la croissance tumorale dans notre modèle de mésothéliome malin humain. En conclusion, l'utilisation de la PDT comme prétraitement pour améliorer sélectivement la distribution d'agents thérapeutiques dans des tumeurs poussant superficiellement est prometteuse. Cette observation fourni une preuve du concept remarquable et garanti la suite des investigations, éventuellement ayant pour but de développer de nouveaux concepts de thérapie pour les patients atteints de mésothéliome. Une PDT intra cavitaire à faible dose après pleuro- pneumonectomie pourrait améliorer la pénétration des agents cytostatiques administrés de façon concomitante par voie systémique dans les îlots tumoraux résiduels, et ainsi améliorer le contrôle local.
Resumo:
A three-dimensional cell culture system was used as a model to study the influence of low levels of mercury in the developing brain. Aggregating cell cultures of fetal rat telencephalon were treated for 10 days either during an early developmental period (i.e., between days 5 and 15 in vitro) or during a phase of advanced maturation (i.e., between days 25 and 35) with mercury. An inorganic (HgCl2) and an organic mercury compound (monomethylmercury chloride, MeHgCl) were examined. By monitoring changes in cell type-specific enzymes activities, the concentration-dependent toxicity of the compounds was determined. In immature cultures, a general cytotoxicity was observed at 10(-6) M for both mercury compounds. In these cultures, HgCl2 appeared somewhat more toxic than MeHgCl. However, no appreciable demethylation of MeHgCl could be detected, indicating similar toxic potencies for both mercury compounds. In highly differentiated cultures, by contrast, MeHgCl exhibited a higher toxic potency than HgCl2. In addition, at 10(-6) M, MeHgCl showed pronounced neuron-specific toxicity. Below the cytotoxic concentrations, distinct glia-specific reactions could be observed with both mercury compounds. An increase in the immunoreactivity for glial fibrillary acidic protein, typical for gliosis, could be observed at concentrations between 10(-9) M and 10(-7) M in immature cultures, and between 10(-8) M and 3 x 10(-5) M in highly differentiated cultures. A conspicuous increase in the number and clustering of GSI-B4 lectin-binding cells, indicating a microglial response, was found at concentrations between 10(-10) M and 10(-7) M. These development-dependent and cell type-specific effects may reflect the pathogenic potential of long-term exposure to subclinical doses of mercury.
Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors.
Resumo:
Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4-8, corresponding to 4-8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4-8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)-CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral-CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg(-1)), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep-wake cycle.
Resumo:
Retinal diseases are nowadays the most common causes of vision threatening in developed countries. Therapeutic advances in this field are hindered by the difficulty to deliver drugs to the posterior segment of the eye. Due to anatomical barriers, the ocular biodisponibility of systemically administered drugs remains poor, and topical instillation is not adequate to achieve therapeutic concentrations of drugs in the back of the eye. Ocular drug delivery has thus become one of the main challenges of modern ophthalmology. A multidisciplinary research is being conducted worldwide including pharmacology, biomaterials, ophthalmology, pharmaceutics, and biology. New promising fields have been developed such as implantable or injectable slow release intravitreal devices and degradable polymers, dispersed polymeric systems for intraocular drug delivery, and transscleral delivery devices such as iontophoresis, osmotic pumps or intra-scleraly implantable materials. The first clinical applications emerging from this research are now taking place, opening new avenues for the treatment of retinal diseases.
Resumo:
The development of new drug delivery systems to target the anterior segment of the eye may offer many advantages: to increase the biodisponibility of the drug, to allow the penetration of drug that cannot be formulated as solutions, to obtain constant and sustained drug release, to achieve higher local concentrations without systemic effects, to target more specifically one tissue or cell type, to reduce the frequency of instillation and therefore increase the observance and comfort of the patient while reducing side effects of frequent instillation. Several approaches are developed, aiming to increase the corneal contact time by modified formulation or reservoir systems, or by increasing the tissue permeability using iontophoresis. To date, no ocular drug delivery system is ideal for all purposes. To maximize treatment efficacy, careful evaluation of the specific pathological condition, the targeted Intraocular tissue and the location of the most severe pathology must be made before selecting the method of delivery most suitable for each individual patient.
Resumo:
Beside the several growth factors which play a crucial role in the development and regeneration of the nervous system, thyroid hormones also contribute to the normal development of the central and peripheral nervous system. In our previous work, we demonstrated that triiodothyronine (T3) in physiological concentration enhances neurite outgrowth of primary sensory neurons in cultures. Neurite outgrowth requires microtubules and microtubule associated proteins (MAPs). Therefore the effects of exogenous T3 or/and nerve growth factors (NGF) were tested on the expression of cytoskeletal proteins in primary sensory neurons. Dorsal root ganglia (DRG) from 19 day old rat embryos were cultured under four conditions: (1) control cultures in which explants were grown in the absence of T3 and NGF, (2) cultures grown in the presence of NGF alone, (3) in the presence of T3 alone or (4) in the presence of NGF and T3 together. Analysis of proteins by SDS-polyacrylamide gel electrophoresis revealed the presence of several proteins in the molecular weight region around 240 kDa. NGF and T3 together induced the expression of one protein, in particular, with a molecular weight above 240 kDa, which was identified by an antibody against MAP1c, a protein also known as cytoplasmic dynein. The immunocytochemical detection confirmed that this protein was expressed only in DRG explants grown in the presence of NGF and T3 together. Neither control explants nor explants treated with either NGF or T3 alone expressed dynein. In conclusion, a combination of nerve growth factor and thyroid hormone is necessary to regulate the expression of cytoplasmic dynein, a protein that is involved in retrograde axonal transport.