972 resultados para Rarefied gas dynamics
Resumo:
State and parameter estimations of non-linear dynamical systems, based on incomplete and noisy measurements, are considered using Monte Carlo simulations. Given the measurements. the proposed method obtains the marginalized posterior distribution of an appropriately chosen (ideally small) subset of the state vector using a particle filter. Samples (particles) of the marginalized states are then used to construct a family of conditionally linearized system of equations and thus obtain the posterior distribution of the states using a bank of Kalman filters. Discrete process equations for the marginalized states are derived through truncated Ito-Taylor expansions. Increased analyticity and reduced dispersion of weights computed over a smaller sample space of marginalized states are the key features of the filter that help achieve smaller sample variance of the estimates. Numerical illustrations are provided for state/parameter estimations of a Duffing oscillator and a 3-DOF non-linear oscillator. Performance of the filter in parameter estimation is also assessed using measurements obtained through experiments on simple models in the laboratory. Despite an added computational cost, the results verify that the proposed filter generally produces estimates with lower sample variance over the standard sequential importance sampling (SIS) filter.
Resumo:
A simple equation to predict the breakdown voltages for binary mixtures (Vmix) of electronegative gases (SF6, CCl2F2) and buffer gases (N2, N2O, CO2, air) under uniform electric field has been proposed. Values of Vmix evaluated using this equation for mixtures of SF6-N2, SF6-air, SF6-N2O, SF6-CO2 and CCl2F2-N2 over a wide range of pd show an excellent agreement with the experimentally measured data available in the literature.
Resumo:
A new class of exact solutions of plane gasdynamic equations is found which describes piston-driven shocks into non-uniform media. The governing equations of these flows are taken in the coordinate system used earlier by Ustinov, and their similarity form is determined by the method of infinitesimal transformations. The solutions give shocks with velocities which either decay or grown in a finite or infinite time depending on the density distribution in the ambient medium, although their strength remains constant. The results of the present study are related to earlier investigations describing the propagation of shocks of constant strength into non-uniform media.
Resumo:
Telomere length has been purported as a biomarker for age and could offer a non-lethal method for determining the age of wild-caught individuals. Molluscs, including oysters and abalone, are the basis of important fisheries globally and have been problematic to accurately age. To determine whether telomere length could provide an alternative means of ageing molluscs, we evaluated the relationship between telomere length and age using the commercially important Sydney rock oyster (Saccostrea glomerata). Telomere lengths were estimated from tissues of known age individuals from different age classes, locations and at different sampling times. Telomere length tended to decrease with age only in young oysters less than 18 months old, but no decrease was observed in older oysters aged 2-4 years. Regional and temporal differences in telomere attrition rates were also observed. The relationship between telomere length and age was weak, however, with individuals of identical age varying significantly in their telomere length making it an imprecise age biomarker in oysters.
Resumo:
A simple formula is developed to predict the sparking potentials of SF6 and SF6-gas mixture in uniform and non-uniform fields. The formula has been shown to be valid over a very wide range from 1 to 1800 kPa·cm of pressure and electrode gap separation for mixtures containing 5 to 100% SF6. The calculated values are found to be in good agreement with the previously reported measurements in the literature. The formula should aid design engineers in estimating electrode-spacings and clearances in power apparatus and systems.
Resumo:
The monsoonal regions of the world are characterized by a seasonal reversal in the direction of winds associated with the excursion of the equatorial trough (or the ITCZ) in response to the variation in the latitude of maximum insolation. This monsoonal circulation is a planetary scale phenomenon. However, the associated precipitation is critically dependent on the organization of the cumulus clouds (typically a few kilometers in horizontal extent) over the scale of synoptic vortices (typically a few hundred kilometers in horizontal extent). Thus modelling of the seasonal transitions and intraseasonal fluctuations requires an understanding of the fluid mechanics of these three scales of organizations and their interactions. The present paper is an attempt to outline the current state of understanding of these phenomena.
Resumo:
Ozone (O3) is a reactive gas present in the troposphere in the range of parts per billion (ppb), i.e. molecules of O3 in 109 molecules of air. Its strong oxidative capacity makes it a key element in tropospheric chemistry and a threat to the integrity of materials, including living organisms. Knowledge and control of O3 levels are an issue in relation to indoor air quality, building material endurance, respiratory human disorders, and plant performance. Ozone is also a greenhouse gas and its abundance is relevant to global warming. The interaction of the lower troposphere with vegetated landscapes results in O3 being removed from the atmosphere by reactions that lead to the oxidation of plant-related components. Details on the rate and pattern of removal on different landscapes as well as the ultimate mechanisms by which this occurs are not fully resolved. This thesis analysed the controlling processes of the transfer of ozone at the air-plant interface. Improvement in the knowledge of these processes benefits the prediction of both atmospheric removal of O3 and its impact on vegetation. This study was based on the measurement and analysis of multi-year field measurements of O3 flux to Scots pine (Pinus sylvestris L.) foliage with a shoot-scale gas-exchange enclosure system. In addition, the analyses made use of simultaneous CO2 and H2O exchange, canopy-scale O3, CO2 and H2O exchange, foliage surface wetness, and environmental variables. All data was gathered at the SMEAR measuring station (southern Finland). Enclosure gas-exchange techniques such as those commonly used for the measure of CO2 and water vapour can be applied to the measure of ozone gas-exchange in the field. Through analysis of the system dynamics the occurring disturbances and noise can be identified. In the system used in this study, the possible artefacts arising from the ozone reactivity towards the system materials in combination with low background concentrations need to be taken into account. The main artefact was the loss of ozone towards the chamber walls, which was found to be very variable. The level of wall-loss was obtained from simultaneous and continuous measurements, and was included in the formulation of the mass balance of O3 concentration inside the chamber. The analysis of the field measurements in this study show that the flux of ozone to the Scots pine foliage is generated in about equal proportions by stomatal and non-stomatal controlled processes. Deposition towards foliage and forest is sustained also during night and winter when stomatal gas-exchange is low or absent. The non-stomatal portion of the flux was analysed further. The pattern of flux in time was found to be an overlap of the patterns of biological activity and presence of wetness in the environment. This was seen to occur both at the shoot and canopy scale. The presence of wetness enhanced the flux not only in the presence of liquid droplets but also during existence of a moisture film on the plant surfaces. The existence of these films and their relation to the ozone sinks was determined by simultaneous measurements of leaf surface wetness and ozone flux. The results seem to suggest ozone would be reacting at the foliage surface and the reaction rate would be mediated by the presence of surface wetness. Alternative mechanisms were discussed, including nocturnal stomatal aperture and emission of reactive volatile compounds. The prediction of the total flux could thus be based on a combination of a model of stomatal behaviour and a model of water absorption on the foliage surfaces. The concepts behind the division of stomatal and non-stomatal sinks were reconsidered. This study showed that it is theoretically possible that a sink located before or near the stomatal aperture prevents or diminishes the diffusion of ozone towards the intercellular air space of the mesophyll. This obstacle to stomatal diffusion happens only under certain conditions, which include a very low presence of reaction sites in the mesophyll, an extremely strong sink located on the outer surfaces or stomatal pore. The relevance, or existence, of this process in natural conditions would need to be assessed further. Potentially strong reactions were considered, including dissolved sulphate, volatile organic compounds, and apoplastic ascorbic acid. Information on the location and the relative abundance of these compounds would be valuable. The highest total flux towards the foliage and forest happens when both the plant activity and ambient moisture are high. The highest uptake into the interior of the foliage happens at large stomatal apertures, provided that scavenging reactions located near the stomatal pore are weak or non-existent. The discussion covers the methodological developments of this study, the relevance of the different controlling factors of ozone flux, the partition amongst its component, and the possible mechanisms of non-stomatal uptake.
Resumo:
Soils represent a remarkable stock of carbon, and forest soils are estimated to hold half of the global stock of soil carbon. Topical concern about the effects of climate change and forest management on soil carbon as well as practical reporting requirements set by climate conventions have created a need to assess soil carbon stock changes reliably and transparently. The large spatial variability of soil carbon commensurate with relatively slow changes in stocks hinders the assessment of soil carbon stocks and their changes by direct measurements. Models therefore widely serve to estimate carbon stocks and stock changes in soils. This dissertation aimed to develop the soil carbon model YASSO for upland forest soils. The model was aimed to take into account the most important processes controlling the decomposition in soils, yet remain simple enough to ensure its practical applicability in different applications. The model structure and assumptions were presented and the model parameters were defined with empirical measurements. The model was evaluated by studying the sensitivities of the model results to parameter values, by estimating the precision of the results with an uncertainty analysis, and by assessing the accuracy of the model by comparing the predictions against measured data and to the results of an alternative model. The model was applied to study the effects of intensified biomass extraction on the forest carbon balance and to estimate the effects of soil carbon deficit on net greenhouse gas emissions of energy use of forest residues. The model was also applied in an inventory based method to assess the national scale forest carbon balance for Finland’s forests from 1922 to 2004. YASSO managed to describe sufficiently the effects of both the variable litter and climatic conditions on decomposition. When combined with the stand models or other systems providing litter information, the dynamic approach of the model proved to be powerful for estimating changes in soil carbon stocks on different scales. The climate dependency of the model, the effects of nitrogen on decomposition and forest growth as well as the effects of soil texture on soil carbon stock dynamics are areas for development when considering the applicability of the model to different research questions, different land use types and wider geographic regions. Intensified biomass extraction affects soil carbon stocks, and these changes in stocks should be taken into account when considering the net effects of forest residue utilisation as energy. On a national scale, soil carbon stocks play an important role in forest carbon balances.
Resumo:
Here I aimed at quantifying the main components of deadwood dynamics, i.e. tree mortality, deadwood pools, and their decomposition, in late-successional boreal forests. I focused on standing dead trees in three stand types dominated by Picea mariana and Abies balsamea in eastern Canada, and on standing and down dead trees in Picea abies-dominated stands in three areas in Northern Europe. Dead and living trees were measured on five sample plots of 1.6-ha size in each study area and stand type. Stem disks from dead trees were sampled to determine wood density and year of death, using dendrochronological methods. The results were applied to reconstruct past tree mortality and to model deadwood decay class dynamics. Site productivity, stand developmental stage, and the occurrence of episodic tree mortality influenced deadwood volume and quality. In all study areas tree mortality was continuous, leading to continuity in deadwood decay stage distribution. Episodic tree mortality due to either autogenic or allogenic causes influenced deadwood volume and quality in all but one study area. However, regardless of productivity and disturbance history deadwood was abundant, accounting for 20 53% of total wood volume in European study areas, and 15 27% of total standing volume in eastern Canada. Deadwood was a persistent structural component, since its expected residence time in early- and midstages of decay was 18 yr even in the area with the most rapid decomposition. The results indicated that in the absence of episodic tree mortality, stands may eventually develop to a steady state, in which deadwood volume fluctuates around an equilibrium state. However, in many forests deadwood is naturally variable, due to recurrent moderate-severity disturbances. This variability, the continuous tree mortality, and variation in rates of wood decomposition determine the dynamics and availability of deadwood as a habitat and carbon storage medium in boreal coniferous forest ecosystems.
Resumo:
The objectives of this study were to investigate the stand structure and succession dynamics in Scots pine (Pinus sylvestris L.) stands on pristine peatlands and in Scots pine and Norway spruce (Picea abies (L.) Karst.) dominated stands on drained peatlands. Furthermore, my focus was on characterising how the inherent and environmental factors and the intermediate thinnings modify the stand structure and succession. For pristine peatlands, the study was based on inventorial stand data, while for drained peatlands, longitudinal data from repeatedly measured stands were utilised. The studied sites covered the most common peatland site types in Finland. They were classified into two categories according to the ecohydrological properties related to microsite variation and nutrient levels within sites. Tree DBH and age distributions in relation to climate and site type were used to study the stand dynamics on pristine sites. On drained sites, the Weibull function was used to parameterise the DBH distributions and mixed linear models were constructed to characterise the impacts of different ecological factors on stand dynamics. On pristine peatlands, both climate and the ecohydrology of the site proved to be crucial factors determining the stand structure and its dynamics. Irrespective of the vegetation succession, enhanced site productivity and increased stand stocking they significantly affected the stand dynamics also on drained sites. On the most stocked sites on pristine peatlands the inter-tree competition seemed to also be a significant factor modifying stand dynamics. Tree age and size diversity increased with stand age, but levelled out in the long term. After drainage, the stand structural unevenness increased due to the regeneration and/or ingrowth of the trees. This increase was more pronounced on sparsely forested composite sites than on more fully stocked genuine forested sites in Scots pine stands, which further undergo the formation of birch and spruce undergrowth beneath the overstory as succession proceeds. At 20-30 years after drainage the structural heterogeneity started to decrease, indicating increased inter-tree competition, which increased the mortality of suppressed trees within stand. Peatland stands are more dynamic than anticipated and are generally not characterized by a balanced, self-perpetuating structure. On pristine sites, various successional pathways are possible, whereas on drained sites the succession has more uniform trend. Typically, stand succession proceeds without any distinct developmental stages on pristine peatlands, whereas on drained peatlands, at least three distinct stages could be identified. Thinnings had only little impact on the stand succession. The new information on stand dynamics may be utilised, e.g. in forest management planning to facilitate the allocation of the growth resources to the desired crop component by appropriate silvicultural treatments, as well as assist in assessing the effects of the climate change on the forested boreal peatlands.
Resumo:
It is essential to have a thorough understanding of the sources and sinks of oxidized nitrogen (NOy) in the atmosphere, since it has a strong influence on the tropospheric chemistry and the eutrophication of ecosystems. One unknown component in the balance of gaseous oxidized nitrogen is vegetation. Plants absorb nitrogenous species from the air via the stomata, but it is not clear whether plants can also emit them at low ambient concentrations. The possible emissions are small and difficult to measure. The aim of this thesis was to analyse an observation made in southern Finland at the SMEAR II station: solar ultraviolet radiation (UV) induced NOy emissions in chambers measuring the gas exchange of Scots pine (Pinus sylvestris L.) shoots. Both measuring and modelling approaches were used in the study. The measurements were performed under noncontrolled field conditions at low ambient NOy concentrations. The chamber blank i.e. artefact NOy emissions from the chamber walls, was dependent on the UV irradiance and increased with time after renewing the Teflon film on chamber surfaces. The contribution of each pine shoot to the total NOy emissions in the chambers was determined by testing whether the emissions decrease when the shoots are removed from their chambers. Emissions did decrease, but only when the chamber interior was exposed to UV radiation. It was concluded that also the pine shoots emit NOy. The possible effects of transpiration on the chamber blank are discussed in the summary part of the thesis, based on previously unpublished data. The possible processes underlying the UV-induced NOy emissions were reviewed. Surface reactions were more likely than metabolic processes. Photolysis of nitrate deposited on the needles may have generated the NOy emissions; the measurements supported this hypothesis. In that case, the emissions apparently would consist mainly of nitrogen dioxide (NO2), nitric oxide (NO) and nitrous acid (HONO). Within studies on NOy exchange of plants, the gases most frequently studied are NO2 and NO (=NOx). In the present work, the implications of the emissions for the NOx exchange of pine were analysed with a model including both NOy emissions and NOy absorption. The model suggested that if the emissions exist, pines can act as an NOx source rather than a sink, even under relatively high ambient concentrations.
Resumo:
Europe was declared malaria free in 1975. The disappearance of malaria has traditionally been attributed to numerous deliberate actions like vector control, the screening of houses, more efficient medication etc. Malaria, however, disappeared from many countries like Finland before any counter measures had even started. The aim of this thesis is to study the population ecology of P. vivax and its interaction with the human host and the vector. By finding the factors that attributed to the extinction of vivax malaria it might be possible to improve the modern strategy against P. vivax. The parasite was studied with data from Finland, which provides the longest time series (1749-2008) of malaria statistics in the world. The malaria vectors, Anopheles messeae and A. beklemishevi are still common species in the country. The eradication of vivax malaria is difficult because the parasite has a dormant stage that can cause a relapse long after a primary infection. It was now shown that P. vivax is able to detect the presence of a potential vector. A dormant stage is triggered even from a bite of an uninfected Anopheles mosquito. This optimizes the chances for the Plasmodium to reach a mosquito vector for sexual reproduction. The longevity of the dormant stage could be shown to be at least nine years. The parasite spends several years in its human host and the behaviour of the human carrier had a profound impact on the decline of the disease in Finland. Malaria spring epidemics could be explained by a previous warm summer. Neither annual nor summer mean temperature had any impact on the long term malaria trend. Malaria disappeared slowly from Finland without mosquito control. The sociological change from extended families to nuclear families led to decreased household size. The decreased household size correlated strongly with the decline of malaria. That led to an increased isolation of the subpopulations of P. vivax. Their habitat consisted of the bedrooms in which human carriers slept together with the overwintering vectors. The isolation of the parasite ultimately led to the extinction of vivax malaria. Metapopulation models adapted to local conditions should therefore be implemented as a tool for settlement planning and socio-economic development and become an integrated part of the fight against malaria.
Resumo:
The study focuses on the potential roles of the brick making industries in Sudan in deforestation and greenhouse gas emission due to the consumption of biofuels. The results were based on the observation of 25 brick making industries from three administrative regions in Sudan namely, Khartoum, Kassala and Gezira. The methodological approach followed the procedures outlined by the Intergovernmental Panel on Climate Change (IPCC). For predicting a serious deforestation scenario, it was also assumed that all of wood use for this particular purpose is from unsustainable sources. The study revealed that the total annual quantity of fuelwood consumed by the surveyed brick making industries (25) was 2,381 t dm. Accordingly, the observed total potential deforested wood was 10,624 m3, in which the total deforested round wood was 3,664 m3 and deforested branches was 6,961 m3. The study observed that a total of 2,990 t biomass fuels (fuelwood and dung cake) consumed annually by the surveyed brick making industries for brick burning. Consequently, estimated total annual emissions of greenhouse gases were 4,832 t CO2, 21 t CH4, 184 t CO, 0.15 t N20, 5 t NOX and 3.5 t NO while the total carbon released in the atmosphere was 1,318 t. Altogether, the total annual greenhouse gases emissions from biomass fuels burning was 5,046 t; of which 4,104 t from fuelwood and 943 t from dung cake burning. According to the results, due to the consumption of fuelwood in the brick making industries (3,450 units) of Sudan, the amount of wood lost from the total growing stock of wood in forests and trees in Sudan annually would be 1,466,000 m3 encompassing 505,000 m3 round wood and 961,000 m3 branches annually. By considering all categories of biofuels (fuelwood and dung cake), it was estimated that, the total emissions from all the brick making industries of Sudan would be 663,000 t CO2, 2,900 t CH4, 25,300 t CO, 20 t N2O, 720 t NOX and 470 t NO per annum, while the total carbon released in the atmosphere would be 181,000 t annually.