895 resultados para Rapid Early Response
Resumo:
Dopamine (DA) inhibition of Na+,K+-ATPase in proximal tubule cells is associated with increased endocytosis of its α and β subunits into early and late endosomes via a clathrin vesicle-dependent pathway. In this report we evaluated intracellular signals that could trigger this mechanism, specifically the role of phosphatidylinositol 3-kinase (PI 3-K), the activation of which initiates vesicular trafficking and targeting of proteins to specific cell compartments. DA stimulated PI 3-K activity in a time- and dose-dependent manner, and this effect was markedly blunted by wortmannin and LY 294002. Endocytosis of the Na+,K+-ATPase α subunit in response to DA was also inhibited in dose-dependent manner by wortmannin and LY 294002. Activation of PI 3-K generally occurs by association with tyrosine kinase receptors. However, in this study immunoprecipitation with a phosphotyrosine antibody did not reveal PI 3-K activity. DA-stimulated endocytosis of Na+,K+-ATPase α subunits required protein kinase C, and the ability of DA to stimulate PI 3-K was blocked by specific protein kinase C inhibitors. Activation of PI 3-K is mediated via the D1 receptor subtype and the sequential activation of phospholipase A2, arachidonic acid, and protein kinase C. The results indicate a key role for activation of PI 3-K in the endocytic sequence that leads to internalization of Na+,K+-ATPase α subunits in response to DA, and suggest a mechanism for the participation of protein kinase C in this process.
Resumo:
Differentiating 3T3-L1 cells exhibit a dramatic increase in the rate of insulin-stimulated glucose transport during their conversion from proliferating fibroblasts to nonproliferating adipocytes. On day 3 of 3T3-L1 cell differentiation, basal glucose transport and cell surface transferrin binding are markedly diminished. This occurs concomitant with the formation of a distinct insulin-responsive vesicular pool of intracellular glucose transporter 1 (GLUT1) and transferrin receptors as assessed by sucrose velocity gradients. The intracellular distribution of the insulin-responsive aminopeptidase is first readily detectable on day 3, and its gradient profile and response to insulin at this time are identical to that of GLUT1. With further time of differentiation, GLUT4 is expressed and targeted to the same insulin-responsive vesicles as the other three proteins. Our data are consistent with the notion that a distinct insulin-sensitive vesicular cargo compartment forms early during fat call differentiation and its formation precedes GLUT4 expression. The development of this compartment may result from the differentiation-dependent inhibition of constitutive GLUT1 and transferrin receptor trafficking such that there is a large increase in, or the new formation of, a population of postendosomal, insulin-responsive vesicles.
Resumo:
MyoD and Myf5 belong to the family of basic helix-loop-helix transcription factors that are key operators in skeletal muscle differentiation. MyoD and Myf5 genes are selectively activated during development in a time and region-specific manner and in response to different stimuli. However, molecules that specifically regulate the expression of these two genes and the pathways involved remain to be determined. We have recently shown that the serum response factor (SRF), a transcription factor involved in activation of both mitogenic response and muscle differentiation, is required for MyoD gene expression. We have investigated here whether SRF is also involved in the control of Myf5 gene expression, and the potential role of upstream regulators of SRF activity, the Rho family G-proteins including Rho, Rac, and CDC42, in the regulation of MyoD and Myf5. We show that inactivation of SRF does not alter Myf5 gene expression, whereas it causes a rapid extinction of MyoD gene expression. Furthermore, we show that RhoA, but not Rac or CDC42, is also required for the expression of MyoD. Indeed, blocking the activity of G-proteins using the general inhibitor lovastatin, or more specific antagonists of Rho proteins such as C3-transferase or dominant negative RhoA protein, resulted in a dramatic decrease of MyoD protein levels and promoter activity without any effects on Myf5 expression. We further show that RhoA-dependent transcriptional activation required functional SRF in C2 muscle cells. These data illustrate that MyoD and Myf5 are regulated by different upstream activation pathways in which MyoD expression is specifically modulated by a RhoA/SRF signaling cascade. In addition, our results establish the first link between RhoA protein activity and the expression of a key muscle regulator.
Resumo:
Insulin can regulate the abundance and organization of filamentous actin within cells in culture. Early studies using cell lines that overexpress the insulin receptor demonstrated that insulin caused a rapid reversible disassembly of actin filaments that coincided with the rapid tyrosine dephosphorylation of focal adhesion kinase. We have extended these studies by demonstrating that paxillin, another focal adhesion protein, and Src undergo tyrosine dephosphorylation in response to insulin in Chinese hamster ovary (CHO) and rat hepatoma (HTC) cells that overexpress the insulin receptor. This contrasted with the effect of insulin in parental CHO and HTC cells in which focal adhesion proteins were not dephosphorylated in response to the hormone. In addition, insulin caused a dispersion of focal adhesion proteins and disruption of actin filament bundles only in cells that overexpressed the insulin receptor. Moreover, in 3T3-L1 adipocytes, which are considered prototypic insulin-responsive cells, actin filament assembly was stimulated, and focal adhesion protein tyrosine phosphorylation was not altered. 3T3-L1 cells have more insulin receptors than either parental CHO or HTC cells but have fivefold less insulin receptors than the overexpressing cell lines. We hypothesize that a threshold may exist in which the overexpression of insulin receptors determines how insulin signaling pathways regulate the actin cytoskeleton.
Resumo:
We are studying endoplasmic reticulum–associated degradation (ERAD) with the use of a truncated variant of the type I ER transmembrane glycoprotein ribophorin I (RI). The mutant protein, RI332, containing only the N-terminal 332 amino acids of the luminal domain of RI, has been shown to interact with calnexin and to be a substrate for the ubiquitin-proteasome pathway. When RI332 was expressed in HeLa cells, it was degraded with biphasic kinetics; an initial, slow phase of ∼45 min was followed by a second phase of threefold accelerated degradation. On the other hand, the kinetics of degradation of a form of RI332 in which the single used N-glycosylation consensus site had been removed (RI332-Thr) was monophasic and rapid, implying a role of the N-linked glycan in the first proteolytic phase. RI332 degradation was enhanced when the binding of glycoproteins to calnexin was prevented. Moreover, the truncated glycoprotein interacted with calnexin preferentially during the first proteolytic phase, which strongly suggests that binding of RI332 to the lectin-like protein may result in the slow, initial phase of degradation. Additionally, mannose trimming appears to be required for efficient proteolysis of RI332. After treatment of cells with the inhibitor of N-glycosylation, tunicamycin, destruction of the truncated RI variants was severely inhibited; likewise, in cells preincubated with the calcium ionophore A23187, both RI332 and RI332-Thr were stabilized, despite the presence or absence of the N-linked glycan. On the other hand, both drugs are known to trigger the unfolded protein response (UPR), resulting in the induction of BiP and other ER-resident proteins. Indeed, only in drug-treated cells could an interaction between BiP and RI332 and RI332-Thr be detected. Induction of BiP was also evident after overexpression of murine Ire1, an ER transmembrane kinase known to play a central role in the UPR pathway; at the same time, stabilization of RI332 was observed. Together, these results suggest that binding of the substrate proteins to UPR-induced chaperones affects their half lives.
Resumo:
The atmosphere displays modes of variability whose structures exhibit a strong longitudinally symmetric (annular) component that extends from the surface to the stratosphere in middle and high latitudes of both hemispheres. In the past 30 years, these modes have exhibited trends that seem larger than their natural background variability, and may be related to human influences on stratospheric ozone and/or atmospheric greenhouse gas concentrations. The pattern of climate trends during the past few decades is marked by rapid cooling and ozone depletion in the polar lower stratosphere of both hemispheres, coupled with an increasing strength of the wintertime westerly polar vortex and a poleward shift of the westerly wind belt at the earth's surface. Annular modes of variability are fundamentally a result of internal dynamical feedbacks within the climate system, and as such can show a large response to rather modest external forcing. The dynamics and thermodynamics of these modes are such that strong synergistic interactions between stratospheric ozone depletion and greenhouse warming are possible. These interactions may be responsible for the pronounced changes in tropospheric and stratospheric climate observed during the past few decades. If these trends continue, they could have important implications for the climate of the 21st century.
Resumo:
Mutations in the retinal pigment epithelium gene encoding RPE65 are a cause of the incurable early-onset recessive human retinal degenerations known as Leber congenital amaurosis. Rpe65-deficient mice, a model of Leber congenital amaurosis, have no rod photopigment and severely impaired rod physiology. We analyzed retinoid flow in this model and then intervened by using oral 9-cis-retinal, attempting to bypass the biochemical block caused by the genetic abnormality. Within 48 h, there was formation of rod photopigment and dramatic improvement in rod physiology, thus demonstrating that mechanism-based pharmacological intervention has the potential to restore vision in otherwise incurable genetic retinal degenerations.
Resumo:
Changes in intracellular calcium in pea root hairs responding to Rhizobium leguminosarum bv. viciae nodulation (Nod) factors were analyzed by using a microinjected calcium-sensitive fluorescent dye (dextran-linked Oregon Green). Within 1–2 min after Nod-factor addition, there was usually an increase in fluorescence, followed about 10 min later by spikes in fluorescence occurring at a rate of about one spike per minute. These spikes, corresponding to an increase in calcium of ≈200 nM, were localized around the nuclear region, and they were similar in terms of lag and period to those induced by Nod factors in alfalfa. Calcium responses were analyzed in nonnodulating pea mutants, representing seven loci that affect early stages of the symbiosis. Mutations affecting three loci (sym8, sym10, and sym19) abolished Nod-factor-induced calcium spiking, whereas a normal response was seen in peas carrying alleles of sym2A, sym7, sym9, and sym30. Chitin oligomers of four or five N-acetylglucosamine residues could also induce calcium spiking, although the response was qualitatively different from that induced by Nod factors; a rapid increase in intracellular calcium was not observed, the period between spikes was lower, and the response was not as sustained. The chitin-oligomer-induced calcium spiking did not occur in nodulation mutants (sym8, sym10, and sym19) that were defective for Nod-factor-induced spiking, suggesting that this response is related to nodulation signaling. From our data and previous observations on the lack of mycorrhizal infection in some of the sym mutants, we propose a model for the potential order of pea nodulation genes in nodulation and mycorrhizal signaling.
Resumo:
Objective: To determine whether the excess mortality observed in patients who received both levodopa and selegiline in a randomised trial could be explained by revised diagnosis of Parkinson’s disease, autonomic or cardiovascular effects, more rapid disease progression, or drug interactions.
Resumo:
We developed a real-time detection (RTD) polymerase chain reaction (PCR) with rapid thermal cycling to detect and quantify Pseudomonas aeruginosa in wound biopsy samples. This method produced a linear quantitative detection range of 7 logs, with a lower detection limit of 103 colony-forming units (CFU)/g tissue or a few copies per reaction. The time from sample collection to result was less than 1h. RTD-PCR has potential for rapid quantitative detection of pathogens in critical care patients, enabling early and individualized treatment.
Resumo:
To elucidate the roles of visual areas V1 and V2 and their interaction in early perceptual processing, we studied the responses of V1 and V2 neurons to statically displayed Kanizsa figures. We found evidence that V1 neurons respond to illusory contours of the Kanizsa figures. The illusory contour signals in V1 are weaker than in V2, but are significant, particularly in the superficial layers. The population averaged response to illusory contours emerged 100 msec after stimulus onset in the superficial layers of V1, and around 120–190 msec in the deep layers. The illusory contour response in V2 began earlier, occurring at 70 msec in the superficial layers and at 95 msec in the deep layers. The temporal sequence of the events suggests that the computation of illusory contours involves intercortical interaction, and that early perceptual organization is likely to be an interactive process.
Resumo:
Proper understanding of processes underlying visual perception requires information on the activation order of distinct brain areas. We measured dynamics of cortical signals with magnetoencephalography while human subjects viewed stimuli at four visual quadrants. The signals were analyzed with minimum current estimates at the individual and group level. Activation emerged 55–70 ms after stimulus onset both in the primary posterior visual areas and in the anteromedial part of the cuneus. Other cortical areas were active after this initial dual activation. Comparison of data between species suggests that the anteromedial cuneus either comprises a homologue of the monkey area V6 or is an area unique to humans. Our results show that visual stimuli activate two cortical areas right from the beginning of the cortical response. The anteromedial cuneus has the temporal position needed to interact with the primary visual cortex V1 and thereby to modify information transferred via V1 to extrastriate cortices.
Resumo:
Alzheimer's disease produces a devastating decline in mental function, with profound effects on learning and memory. Early consequences of the disease include the specific loss of cholinergic neurons in brain, diminished cholinergic signaling, and the accumulation of β-amyloid peptide in neuritic plaques. Of the nicotinic acetylcholine receptors at risk, the most critical may be those containing the α7 gene product (α7-nAChRs), because they are widespread, have a high relative permeability to calcium, and regulate numerous cellular events in the nervous system. With the use of whole-cell patch–clamp recording we show here that nanomolar concentrations of β-amyloid peptides specifically and reversibly block α7-nAChRs on rat hippocampal neurons in culture. The block is noncompetitive, voltage-independent, and use-independent and is mediated through the N-terminal extracellular domain of the receptor. It does not appear to require either calcium influx or G protein activation. β-Amyloid blockade is likely to be a common feature of α7-nAChRs because it applies to the receptors at both somato-dendritic and presynaptic locations on rat hippocampal neurons and extends to homologous receptors on chick ciliary ganglion neurons as well. Because α7-nAChRs in the central nervous system are thought to have numerous functions and recently have been implicated in learning and memory, impaired receptor function in this case may contribute to cognitive deficits associated with Alzheimer's disease.
Resumo:
The G-protein activator mastoparan (MP) was found to elicit the hypersensitive response (HR) in isolated Asparagus sprengeri mesophyll cells at micromolar concentrations. The HR was characterized by cell death, extracellular alkalinization, and an oxidative burst, indicated by the reduction of molecular O2 to O2⋅−. To our knowledge, this study was the first to monitor photosynthesis during the HR. MP had rapid and dramatic effects on photosynthetic electron transport and excitation energy transfer as determined by variable chlorophyll a fluorescence measurements. A large increase in nonphotochemical quenching of chlorophyll a fluorescence accompanied the initial stages of the oxidative burst. The minimal level of fluorescence was also quenched, which suggests the origin of this nonphotochemical quenching to be a decrease in the antenna size of photosystem II. In contrast, photochemical quenching of fluorescence decreased dramatically during the latter stages of the oxidative burst, indicating a somewhat slower inhibition of photosystem II electron transport. The net consumption of O2 and the initial rate of O2 uptake, elicited by MP, were higher in the light than in the dark. These data indicate that light enhances the oxidative burst and suggest a complex relationship between photosynthesis and the HR.
Resumo:
Insect damage on fossil leaves from the Central Rocky Mountains, United States, documents the response of herbivores to changing regional climates and vegetation during the late Paleocene (humid, warm temperate to subtropical, predominantly deciduous), early Eocene (humid subtropical, mixed deciduous and evergreen), and middle Eocene (seasonally dry, subtropical, mixed deciduous and thick-leaved evergreen). During all three time periods, greater herbivory occurred on taxa considered to have short rather than long leaf life spans, consistent with studies in living forests that demonstrate the insect resistance of long-lived, thick leaves. Variance in herbivory frequency and diversity was highest during the middle Eocene, indicating the increased representation of two distinct herbivory syndromes: one for taxa with deciduous, palatable foliage, and the other for hosts with evergreen, thick-textured, small leaves characterized by elevated insect resistance. Leaf galling, which is negatively correlated with moisture today, apparently increased during the middle Eocene, whereas leaf mining decreased.