919 resultados para Radius of Convexity
Resumo:
Measurements of the growth of artificially generated turbulent spots and intermittency distribution in the transition region on a circular cylinder in axial flow show that the instability Reynolds number of 11,000 has a marked effect on the properties. In particular, it is found that the spot production in the initial region when a single turbulent spot has not yet wrapped around the cylinder and the propagation is essentially two-dimensional, is significantly altered. But the transition in the downstream or latter region, where most of the turbulent spots propagate onedimensionally (like the turbulent plugs in a pipe), is not affected. When the radius Reynolds number is more than 11,000, the intermittency law in the initial region is essentially the same as in twodimensional flow on a flat plate and in the latter region it is the one-dimensional flow in a pipe, the demarcation between the two regions being quite sharp.
Resumo:
The flow of single large liquid bubbles under gravity in closed tubes is studied here for the case when the liquid bubble exhibits micropolar behaviour. The film thickness, velocity profile in the bubble and film, and nonNewtonian effects are studied and compared with those for the correspondingNewtonian fluid. The investigation is restricted to the case where the bubble length is far greater than the tube radius.
Resumo:
This paper reports a numerical study of the laminar conjugate natural convection heat transfer with and without the interaction of the surface radiation in a horizontal cylindrical annulus formed between an inner heat generating solid circular cylinder and an outer isothermal circular boundary. Numerical solutions are obtained by solving the governing equations with a pressure correction method on a collocated (non-staggered) mesh. Steady-state results are presented for the flow and temperature distributions and Nusselt numbers for the heat generation based Grashof number ranging from 10(7) to 10(10), solid-to-fluid thermal conductivity ratios of 1, 5, 10, 50 and 100, radius ratios of 0.226 and 0.452 and surface emissivities of 0-0.8 with air as the working medium. It is observed that surface radiation reduces the convective heat transfer in the annulus compared to the pure natural convection case and enhances the overall Nusselt number.
Resumo:
The Capercaillie (Tetrao urogallus L.) is often used as a focal species for landscape ecological studies: the minimum size for its lekking area is 300 ha, and the annual home range for an individual may cover 30 80 km2. In Finland, Capercaillie populations have decreased by approximately 40 85%, with the declines likely to have started in the 1940s. Although the declines have partly stabilized from the 1990s onwards, it is obvious that the negative population trend was at least partly caused by changes in human land use. The aim of this thesis was to study the connections between human land use and Capercaillie populations in Finland, using several spatial and temporal scales. First, the effect of forest age structure on Capercaillie population trends was studied in 18 forestry board districts in Finland, during 1965 1988. Second, the abundances of Capercaillie and Moose (Alces alces L.) were compared in terms of several land-use variables on a scale of 50 × 50 km grids and in five regions in Finland. Third, the effects of forest cover and fine-grain forest fragmentation on Capercaillie lekking area persistence were studied in three study locations in Finland, on 1000 and 3000 m spatial scales surrounding the leks. The analyses considering lekking areas were performed with two definitions for forest: > 60 and > 152 m3ha 1 of timber volume. The results show that patterns and processes at large spatial scales strongly influence Capercaillie in Finland. In particular, in southwestern and eastern Finland, high forest cover and low human impact were found to be beneficial for this species. Forest cover (> 60 m3ha 1 of timber) surrounding the lekking sites positively affected lekking area persistence only at the larger landscape scale (3000 m radius). The effects of older forest classes were hard to assess due to scarcity of older forests in several study areas. Young and middle-aged forest classes were common in the vicinity of areas with high Capercaillie abundances especially in northern Finland. The increase in the amount of younger forest classes did not provide a good explanation for Capercaillie population decline in 1965 1988. In addition, there was no significant connection between mature forests (> 152 m3ha 1 of timber) and lekking area persistence in Finland. It seems that in present-day Finnish landscapes, area covered with old forest is either too scarce to efficiently explain the abundance of Capercaillie and the persistence of the lekking areas, or the effect of forest age is only important when considering smaller spatial scales than the ones studied in this thesis. In conclusion, larger spatial scales should be considered for assessing the future Capercaillie management. According to the proposed multi-level planning, the first priority should be to secure the large, regional-scale forest cover, and the second priority should be to maintain fine-grained, heterogeneous structure within the separate forest patches. A management unit covering hundreds of hectares, or even tens or hundreds of square kilometers, should be covered, which requires regional-level land-use planning and co-operation between forest owners.
Resumo:
Force-free equilibrium configurations of magnetic-pressure-dominated magnetized supersonic jets confined by slowly varying external pressure are investigated analytically. For the case where internal dissipation mechanisms are active, the lowest-energy field configuration is found to be the superposition of an axisymmetric mode and a helical mode with a wavelength equal to 5 times the jet radius, and the pressure below which the nonaxisymmetric mode becomes energetically favorable is given as 2700 times the product of the 4th power of the magnetic helicity per unit length and the -6th power of the magnetic flux. A model of the total and polarized emission of such a configuration is developed and applied to the extended well-collimated astronomically resolved jet NGC 6251. The model is shown to reproduce significant features such as transverse oscillations of the ridge line, width oscillations and emission knots, the projected magnetic-field configuration, oscillations of the degree of polarization, and the distribution of the Faraday rotation measure.
Resumo:
Boron Nitride Nanotubes (BNNTs) have alternating boron and nitrogen atoms in graphite like network and are strongly polar in nature due to a large charge on boron and nitrogen atoms. Hence electrostatic interactions are expected to play an important role in determining the elastic properties of BNNTs. In the absence of specific partial atomic charge information for boron and nitrogen, we have studied the elastic properties BNNTs varying the partial atomic charges on boron and nitrogen. We have computed Young modulus (Y) and Shear modulus (G) of BNNT as a function of the tube radius and number of walls using molecular mechanics calculation. Our calculation shows that Young modulus of BNNTs increases with increase in magnitude of the partial atomic charge on B and N and can be larger than the Young modulus of CNTs of same radius. This is in contrast to the earlier finding that CNTs has the largest tensile strength (PRL, 80, 4502, 1998). Shear modulus, on the other hand depends weakly on the magnitude of partial atomic charge and is less than the shear modulus of the CNT. The values obtained for Young modulus and Shear modulus are in excellent agreement with the available experimental results.
Resumo:
The paper presents a novel slicing based method for computation of volume fractions in multi-material solids given as a B-rep whose faces are triangulated and shared by either one or two materials. Such objects occur naturally in geoscience applications and the said computation is necessary for property estimation problems and iterative forward modeling. Each facet in the model is cut by the planes delineating the given grid structure or grid cells. The method, instead of classifying the points or cells with respect to the solid, exploits the convexity of triangles and the simple axis-oriented disposition of the cutting surfaces to construct a novel intermediate space enumeration representation called slice-representation, from which both the cell containment test and the volume-fraction computation are done easily. Cartesian and cylindrical grids with uniform and non-uniform spacings have been dealt with in this paper. After slicing, each triangle contributes polygonal facets, with potential elliptical edges, to the grid cells through which it passes. The volume fractions of different materials in a grid cell that is in interaction with the material interfaces are obtained by accumulating the volume contributions computed from each facet in the grid cell. The method is fast, accurate, robust and memory efficient. Examples illustrating the method and performance are included in the paper.
Resumo:
Phase-singular solid solutions of La0.6Sr0.4Mn1-yMeyO3 (0 <= y <= 0.3) [Me=Li1+, Mg2+, Al3+, Ti4+, Nb5+, Mo6+ or W6+] [LSMey] perovskite of rhombohedral symmetry (space group: R (3) over barc) have been prepared wherein the valence of the diamagnetic substituent at Mn site ranged from 1 to 6. With increasing y-content in LSMey, the metal-insulator (TM-I) transition in resistivity-temperature rho(T) curves shifted to low temperatures. The magnetization studies M(H) as well as the M(T) indicated two groups for LSMey. (1) Group A with Me=Mg, Al, Ti, or Nb which are paramagnetic insulators (PIs) at room temperature with low values of M (< 0.5 mu(B)/Mn); the magnetic transition [ferromagnetic insulator (FMI)-PI] temperature (T-C) shifts to low temperatures and nearly coincides with that of TM-I and the maximum magnetoresistance (MR) of similar to 50% prevails near T-C (approximate to TM-I). (2) Group-B samples with Me=Li, Mo, or W which are FMIs with M-s=3.3-3.58 mu(B)/Mn and marginal reduction in T-C similar to 350 K as compared to the undoped LSMO (T-C similar to 378 K). The latter samples show large temperature differences Delta T=T-c-TM-I, reaching up to similar to 288 K. The maximum MR (similar to 60%) prevails at low temperatures corresponding to the M-I transition TM-I rather than around T-C. High resolution lattice images as well as microscopy analysis revealed the prevalence of inhomogeneous phase mixtures of randomly distributed charge ordered-insulating (COI) bistripes (similar to 3-5 nm width) within FMI charge-disordered regions, yet maintaining crystallographically single phase with no secondary precipitate formation. The averaged ionic radius < r(B)>, valency, or charge/radius ratio < CRR > cannot be correlated with that of large Delta T; hence cannot be used to parametrize the discrepancy between T-C and TM-I. The M-I transition is controlled by the charge conduction within the electronically heterogeneous mixtures (COI bistripes+FMI charge disordered); large MR at TM-I suggests that the spin-ordered FM-insulating regions assist the charge transport, whereas the T-C is associated with the bulk spin ordered regions corresponding to the FMI phase of higher volume fraction of which anchors the T-C to higher temperatures. The present analysis showed that the double-exchange model alone cannot account for the wide bifurcation of the magnetic and electric transitions, contributions from the charge as well as lattice degrees of freedom to be separated from spin/orbital ordering. The heterogeneous phase mixtures (COI+FMI) cannot be treated as of granular composite behavior. (c) 2008 American Institute of Physics.
Resumo:
The infra-red spectra of Cu, Ca, Sr, Ba and Pb chloroacetates were studied in order to investigate the effect of co-ordination on the vibration spectra of the ligand. The shifts of the symmetric and antisymmetric COO− vibrational frequencies indicate a bridged structure as the most probable one for the complexes investigated. No linear relationship between the shifts of the COO− stretching frequencies and E/r (where E is the electron excitation energy and r the ionic radius) was observed. No systematic mass effect on these COO− frequencies also could be established.
Resumo:
A systematic study has been made of the crystal co-ordination of the barium ion in various compounds whose structures have been solved. Apart from the more common co-ordination polyhedra which are enumerated in text-books, a number of new polyhedra have been identified, particularly in cases where the co-ordination numbers are unusual, such as ten or eleven. According to the radius-ratio rule of Pauling, a co-ordination number of nine or ten is normally expected for the barium ion. The present investigations, however, reveal that it shows a variety of co-ordinations with ligancies from six up to twelve. Some of the factors that might possibly enter in explaining this wide range of co-ordination numbers are discussed. It appears as though the part played by the Ba2+ ion in deciding the structure is secondary, limiting itself only to occupying vacant spaces provided by other atoms in the crystal.
Resumo:
A straightforward computation of the list of the words (the `tail words' of the list) that are distributionally most similar to a given word (the `head word' of the list) leads to the question: How semantically similar to the head word are the tail words; that is: how similar are their meanings to its meaning? And can we do better? The experiment was done on nearly 18,000 most frequent nouns in a Finnish newsgroup corpus. These nouns are considered to be distributionally similar to the extent that they occur in the same direct dependency relations with the same nouns, adjectives and verbs. The extent of the similarity of their computational representations is quantified with the information radius. The semantic classification of head-tail pairs is intuitive; some tail words seem to be semantically similar to the head word, some do not. Each such pair is also associated with a number of further distributional variables. Individually, their overlap for the semantic classes is large, but the trained classification-tree models have some success in using combinations to predict the semantic class. The training data consists of a random sample of 400 head-tail pairs with the tail word ranked among the 20 distributionally most similar to the head word, excluding names. The models are then tested on a random sample of another 100 such pairs. The best success rates range from 70% to 92% of the test pairs, where a success means that the model predicted my intuitive semantic class of the pair. This seems somewhat promising when distributional similarity is used to capture semantically similar words. This analysis also includes a general discussion of several different similarity formulas, arranged in three groups: those that apply to sets with graded membership, those that apply to the members of a vector space, and those that apply to probability mass functions.
Resumo:
This paper is devoted to a consideration of the following problem: A spherical mass of fluid of density varrho1, viscosity μ1 and external radius R is surrounded by a fluid of density varrho2 and viscosity μ2.The fluids are immiscible and incompressible. The interface is accelerated radially by g1: to study the effect of viscosity and surface tension on the stability of the interface. By analyzing the problem in spherical harmonics the mathematical problem is reduced to one of solution of the characteristic determinant equation. The particular case of a cavity bubble, where the viscosity μ1 of the fluid inside the bubble is negligible in comparison with the viscosity μ2 of the fluid outside the bubble, is considered in some detail. It is shown that viscosity has a stabilizing role on the interface; and when g1 > T(n − 1) (n + 2)/R2(varrho2 − varrho1) the stabilizing role of both viscosity and surface tension is more pronounced than would result when either of them is taken individually.
Resumo:
We report the results of a study of multi-muon events produced at the Fermilab Tevatron collider and acquired with the CDF II detector using a dedicated dimuon trigger. The production cross section and kinematics of events in which both muon candidates are produced inside the beam pipe of radius 1.5 cm are successfully modeled by known processes which include heavy flavor production. In contrast, we are presently unable to fully account for the number and properties of the remaining events, in which at least one muon candidate is produced outside of the beam pipe, in terms of the same understanding of the CDF II detector, trigger, and event reconstruction.
Resumo:
Electronic transport in the high temperature paramagnetic regime of the colossal magnetoresistive oxides, La(1-x)A(x)MnO(3), A=Ca, Sr, Ba, x similar or equal to 0.1-0.3, has been investigated using resistivity measurements. The main motivation for this work is to relook into the actual magnitude of the activation energy for transport in a number of manganites and study its variation as a function of hole doping (x), average A-site cation radius (< r(A)>), cationic disorder (sigma(2)) and strain (epsilon(zz)). We show that contrary to current practice, the description of a single activation energy in this phase is not entirely accurate. Our results clearly reveal a strong dependence of the activation energy on the hole doping as well as disorder. Comparing the results across different substituent species with different < r(A)> reveals the importance of sigma(2) as a metric to qualify any analysis based on (r(A)). (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We have investigated the size-dependent melting of nanotubes based on a thermodynamic approach and shown that the melting temperature of nanotubes depends on the outer radius and on the inner radius through the thickness of the nanotubes. Size-dependent melting of nanowires and thin films has been derived from that of nanotubes. We validate the size-dependent melting of nanotubes, nanowires and thin films by comparing the results with available molecular dynamic simulations and experimental results. It has also been inferred that superheating occurs when the melting starts from the inner surface and proceeds towards the outer surface, while melting point depression occurs when the melting starts from the outer surface and proceeds towards the inner surface.