994 resultados para Radar bistatic RMS-slope surface simulator
Resumo:
Nanotechnology is an important emerging industry with a projected annual market of around one trillion dollars by 2015. It involves the control of atoms and molecules to create new materials with a variety of useful functions. Although there are advantages on the utilization of these nano-scale materials, questions related with its impact over the environment and human health must be addressed too, so that potential risks can be limited at early stages of development. At this time, occupational health risks associated with manufacturing and use of nanoparticles are not yet clearly understood. However, workers may be exposed to nanoparticles through inhalation at levels that can greatly exceed ambient concentrations. Current workplace exposure limits are based on particle mass, but this criteria could not be adequate in this case as nanoparticles are characterized by very large surface area, which has been pointed out as the distinctive characteristic that could even turn out an inert substance into another substance exhibiting very different interactions with biological fluids and cells. Therefore, it seems that, when assessing human exposure based on the mass concentration of particles, which is widely adopted for particles over 1 μm, would not work in this particular case. In fact, nanoparticles have far more surface area for the equivalent mass of larger particles, which increases the chance they may react with body tissues. Thus, it has been claimed that surface area should be used for nanoparticle exposure and dosing. As a result, assessing exposure based on the measurement of particle surface area is of increasing interest. It is well known that lung deposition is the most efficient way for airborne particles to enter the body and cause adverse health effects. If nanoparticles can deposit in the lung and remain there, have an active surface chemistry and interact with the body, then, there is potential for exposure. It was showed that surface area plays an important role in the toxicity of nanoparticles and this is the metric that best correlates with particle-induced adverse health effects. The potential for adverse health effects seems to be directly proportional to particle surface area. The objective of the study is to identify and validate methods and tools for measuring nanoparticles during production, manipulation and use of nanomaterials.
Resumo:
The electrooxidative behavior of citalopram (CTL) in aqueous media was studied by cyclic voltammetry (CV) and square-wave voltammetry (SWV) at a glassy-carbon electrode. The electrochemical behaviour of CTL involves two electrons and two protons in the irreversible and diffusion controlled oxidation of the tertiary amine group. The maximum analytical signal was obtained in a phosphate buffer (pH ¼ 8.2). For analytical purposes, an SWV method and a flow-injection analysis (FIA) system with amperometric detection were developed. The optimised SWV method showed a linear range between 1.10 10 5–1.20 10 4 molL 1, with a limit of detection (LOD) of 9.5 10 6 molL 1. Using the FIA method, a linear range between 2.00 10 6–9.00 10 5 molL 1 and an LODof 1.9 10 6 molL 1 were obtained. The validation of both methods revealed good performance characteristics confirming applicability for the quantification of CTL in several pharmaceutical products.
Resumo:
Microwave-assisted extraction (MAE) of agar from Gracilaria vermiculophylla, produced in an integrated multitrophic aquaculture (IMTA) system, from Ria de Aveiro (northwestern Portugal), was tested and optimized using response surface methodology. The influence of the MAE operational parameters (extraction time, temperature, solvent volume and stirring speed) on the physical and chemical properties of agar (yield, gel strength, gelling and melting temperatures, as well as, sulphate and 3,6-anhydro-Lgalactose contents) was evaluated in a 2^4 orthogonal composite design. The quality of the extracted agar compared favorably with the attained using traditional extraction (2 h at 85ºC) while reducing drastically extraction time, solvent consumption and waste disposal requirements. Agar MAE optimum results were: an yield of 14.4 ± 0.4%, a gel strength of 1331 ± 51 g/cm2, 40.7 ± 0.2 _C gelling temperature, 93.1 ± 0.5ºC melting temperature, 1.73 ± 0.13% sulfate content and 39.4 ± 0.3% 3,6-anhydro-L-galactose content. Furthermore, this study suggests the feasibility of the exploitation of G. vermiculophylla grew in IMTA systems for agar production.
Resumo:
Ibuprofen is amongst the most worldwide consumed pharmaceuticals. The present work presents the first data in the occurrence of ibuprofen in Portuguese surface waters, focusing in the north area of the country, which is one of the most densely populated areas of Portugal. Analysis of ibuprofen is based on pre-concentration of the analyte with solid phase extraction and subsequent determination with liquid chromatography coupled to fluorescence detection. A total of 42 water samples, including surface waters, landfill leachates,Wastewater Treatment Plant (WWTP), and hospital effluents, were analyzed in order to evaluate the occurrence of ibuprofen in the north of Portugal. In general, the highest concentrations were found in the river mouths and in the estuarine zone. The maximum concentrations found were 48,720 ngL−1 in the landfill leachate, 3,868 ngL−1 in hospital effluent, 616 ngL−1 in WWTP effluent, and 723 ngL−1 in surface waters (Lima river). Environmental risk assessment was evaluated and at the measured concentrations only landfill leachates reveal potential ecotoxicological risk for aquatic organisms. Owing to a high consumption rate of ibuprofen among Portuguese population, as prescribed and nonprescribed medicine, the importance of hospitals, WWTPs, and landfills as sources of entrance of pharmaceuticals in the environment was pointed out. Landfill leachates showed the highest contribution for ibuprofen mass loading into surface waters. On the basis of our findings, more studies are needed as an attempt to assess more vulnerable areas.
Resumo:
An analytical method using microwave-assisted extraction (MAE) and liquid chromatography (LC) with fluorescence detection (FD) for the determination of ochratoxin A (OTA) in bread samples is described. A 24 orthogonal composite design coupled with response surface methodology was used to study the influence of MAE parameters (extraction time, temperature, solvent volume, and stirring speed) in order to maximize OTA recovery. The optimized MAE conditions were the following: 25 mL of acetonitrile, 10 min of extraction, at 80 °C, and maximum stirring speed. Validation of the overall methodology was performed by spiking assays at five levels (0.1–3.00 ng/g). The quantification limit was 0.005 ng/g. The established method was then applied to 64 bread samples (wheat, maize, and wheat/maize bread) collected in Oporto region (Northern Portugal). OTAwas detected in 84 % of the samples with a maximum value of 2.87 ng/g below the European maximum limit established for OTA in cereal products of 3 ng/g.
Resumo:
Over the last few years, there has been a growing concern about the presence of pharmaceuticals in the environment. The main objective of this study was to develop and validate an SPE method using surface response methodology for the determination of ibuprofen in different types of water samples. The influence of sample pH and sample volume on the ibuprofen recovery was studied. The effect of each studied independent variable is pronounced on the dependent variable (ibuprofen recovery). Good selectivity, extraction efficiency, and precision were achieved using 600 mL of sample volume with the pH adjusted to 2.2. LC with fluorescence detection was employed. The optimized method was applied to 20 water samples from the North and South of Portugal.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
Real-time systems demand guaranteed and predictable run-time behaviour in order to ensure that no task has missed its deadline. Over the years we are witnessing an ever increasing demand for functionality enhancements in the embedded real-time systems. Along with the functionalities, the design itself grows more complex. Posed constraints, such as energy consumption, time, and space bounds, also require attention and proper handling. Additionally, efficient scheduling algorithms, as proven through analyses and simulations, often impose requirements that have significant run-time cost, specially in the context of multi-core systems. In order to further investigate the behaviour of such systems to quantify and compare these overheads involved, we have developed the SPARTS, a simulator of a generic embedded real- time device. The tasks in the simulator are described by externally visible parameters (e.g. minimum inter-arrival, sporadicity, WCET, BCET, etc.), rather than the code of the tasks. While our current implementation is primarily focused on our immediate needs in the area of power-aware scheduling, it is designed to be extensible to accommodate different task properties, scheduling algorithms and/or hardware models for the application in wide variety of simulations. The source code of the SPARTS is available for download at [1].
Resumo:
This technical report describes the Repeater-Based Hybrid Wired/Wireless PROFIBUS Network Simulator that implements a simulation model of the repeater-based approach. This approach defines the mechanism to extend the PROFIBUS protocol to supprot wireless communication, in which the interconnection of the wired and wireless segments is done by a intermediate system operating at Physical Layer, as repeater.
Resumo:
This technical report describes the Mobility Simulator that implements a simulation model of the station mobility and the radio wave propagation.
Resumo:
The Aquitaine Basin (southwestern France) is known since long ago for its richness in marine miocene deposits of various facies. A few stratotypes concerning this period have been described in the investigated area. The stratigraphical framework has been recently revised and the study of new exposures completes our knowledge on these levels. In the present work, the authors produce a biostratigraphical distribution of about 160 species (larger and smaller foraminifera), found in the surface exposures of Aquitaine, from the topmost Oligocene (Chattian) through to Middle Miocene (including Serravallian). As a rule, the common species without significant ranges have not bcen mentioned. The microfaunas of several exposures have been thoroughly revised, which has allowed to precise the distribution of many species and induced a few modifications of the results previously produced. Synonymy problems and new taxonomical revisions have been taken into account. Of course, this work will be probably submitted to some changes according to new research on the already known exposures or other more recently discovered.
Resumo:
This paper presents a novel phase correction technique for Passive Radar which uses targets of opportunity present in the target area as references. The proposed methodology is quite simple and enables the use of low cost hardware with independent oscillators for the reference and surveillance channels which can be geographically distributed. © 2014 IEEE.
Resumo:
This paper presents the Pseudo phase plane (PPP) method for detecting the existence of a nanofilm on the nitroazobenzene-modified glassy carbon electrode (NAB-GC) system. This modified electrode systems and nitroazobenze-nanofilm were prepared by the electrochemical reduction of diazonium salt of NAB at the glassy carbon electrodes (GCE) in nonaqueous media. The IR spectra of the bare glassy carbon electrodes (GCE), the NAB-GC electrode system and the organic NAB film were recorded. The IR data of the bare GC, NAB-GC and NAB film were categorized into five series consisting of FILM1, GC-NAB1, GC1; FILM2, GC-NAB2, GC2; FILM3, GC-NAB3, GC3 and FILM4, GC-NAB4, GC4 respectively. The PPP approach was applied to each group of the data of unmodified and modified electrode systems with nanofilm. The results provided by PPP method show the existence of the NAB film on the modified GC electrode.
Resumo:
This paper presents a methodology to establish investment and trading strategies of a power generation company. These strategies are integrated in the ITEM-Game simulator in order to test their results when played against defined strategies used by other players. The developed strategies are focused on investment decisions, although trading strategies are also implemented to obtain base case results. Two cases are studied considering three players with the same trading strategy. In case 1, all players also have the same investment strategy driven by a market target share. In case 2, player 1 has an improved investment strategy with a target share twice of the target of players 2 and 3. Results put in evidence the influence of the CO2 and fuel prices in the company investment decision. It is also observed the influence of the budget constraint which might prevent the player to take the desired investment decision.
Resumo:
Interest in polyethylene and polypropylene bonding has increased in the last years. However, adhesive joints with adherends which are of low surface energy and which are chemically inert present several difficulties. Generally, their high degree of chemical resistance to solvents and dissimilar solubility parameters limit the usefulness of solvent bonding as a viable assembly technique. One successful approach to adhesive bonding of these materials involves proper selection of surface pre-treatment prior to bonding. With the correct pre-treatment it is possible to glue these materials with one or more of several adhesives required by the applications involved. A second approach is the use of adhesives without surface pre-treatment, such as hot melts, high tack pressure-sensitive adhesives, solvent-based specialty adhesives and, more recently, structural acrylic adhesives as such 3M DP-8005® and Loctite 3030®. In this paper, the shear strengths of two acrylic adhesives were evaluated using the lap shear test method ASTM D3163 and the block shear test method ASTM D4501. Two different industrial polyolefins (polyethylene and polypropylene) were used for adherends. However, the focus of this study was to measure the shear strength of polyethylene joints with acrylic adhesives. The effect of abrasion was also studied. Some test specimens were manually abraded using 180 and 320 grade abrasive paper. An additional goal of this work was to examine the effect of temperature and moisture on mechanical strength of adhesive joints.