914 resultados para RNA trafficking


Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of the sequence of the mitochondrial genome in the flowering plant Arabidopsis thaliana, RNA editing events were systematically investigated in the respective RNA population. A total of 456 C to U, but no U to C, conversions were identified exclusively in mRNAs, 441 in ORFs, 8 in introns, and 7 in leader and trailer sequences. No RNA editing was seen in any of the rRNAs or in several tRNAs investigated for potential mismatch corrections. RNA editing affects individual coding regions with frequencies varying between 0 and 18.9% of the codons. The predominance of RNA editing events in the first two codon positions is not related to translational decoding, because it is not correlated with codon usage. As a general effect, RNA editing increases the hydrophobicity of the coded mitochondrial proteins. Concerning the selection of RNA editing sites, little significant nucleotide preference is observed in their vicinity in comparison to unedited C residues. This sequence bias is, per se, not sufficient to specify individual C nucleotides in the total RNA population in Arabidopsis mitochondria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of a 29-nucleotide RNA containing the sarcin/ricin loop (SRL) of rat 28 S rRNA has been determined at 2.1 Å resolution. Recognition of the SRL by elongation factors and by the ribotoxins, sarcin and ricin, requires a nearly universal dodecamer sequence that folds into a G-bulged cross-strand A stack and a GAGA tetraloop. The juxtaposition of these two motifs forms a distorted hairpin structure that allows direct recognition of bases in both grooves as well as recognition of nonhelical backbone geometry and two 5′-unstacked purines. Comparisons with other RNA crystal structures establish the cross-strand A stack and the GNRA tetraloop as defined and modular RNA structural elements. The conserved region at the top is connected to the base of the domain by a region presumed to be flexible because of the sparsity of stabilizing contacts. Although the conformation of the SRL RNA previously determined by NMR spectroscopy is similar to the structure determined by x-ray crystallography, significant differences are observed in the “flexible” region and to a lesser extent in the G-bulged cross-strand A stack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously, we showed that retinoic acid (RA) binds to the mannose-6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) with high affinity, suggesting that M6P/IGF2R may be a receptor for RA. Here, we show that RA, after 2–3 h of incubation with cultured neonatal-rat cardiac fibroblasts, dramatically alters the intracellular distribution of M6P/IGF2R as well as that of cathepsin B (a lysosomal protease bearing M6P). Immunofluorescence techniques indicate that this change in intracellular distribution is characterized by a shift of the proteins from the perinuclear area to cytoplasmic vesicles. The effect of RA was neither blocked by an RA nuclear receptor antagonist (AGN193109) nor mimicked by a selective RA nuclear-receptor agonist (TTNPB). Furthermore, the RA-induced translocation of cathepsin B was not observed in M6P/IGF2R-deficient P388D1 cells but occurred in stably transfected P388D1 cells expressing the receptor, suggesting that the effect of RA might be the result of direct interaction with M6P/IGF2R, rather than the result of binding to the nuclear receptors. These observations not only support the idea that M6P/IGF2R mediates an RA-response pathway but also indicate a role for RA in control of intracellular trafficking of lysosomal enzymes. Therefore, our observations may have important implications for the understanding of the diverse biological effects of retinoids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA helicase A (RHA) is the human homologue of the Drosophila maleless protein, an essential factor for the development of male flies. Recently, it was shown that RHA cooperates with the cAMP-responsive element in mediating the cAMP-dependent transcriptional activation of a number of genes. Due to the participation of cAMP as a second messenger in a number of signaling pathways, we examined the function of RHA during mammalian embryogenesis. To examine the role(s) of RHA in mammalian development, RHA knockout mice were generated by homologous recombination. Homozygosity for the mutant RHA allele led to early embryonic lethality. Histological analysis, combined with terminal deoxynucleotidyltransferase-mediated UTP end labeling (TUNEL) reactions of RHA-null embryos, revealed marked apoptotic cell death specifically in embryonic ectodermal cells during gastrulation. RNA in situ analyses of the expression of HNF-3β and Brachyury, two molecular markers for gastrulation, showed that RHA-null embryos at days 7.5 and 8.5 expressed both HNF-3β and Brachyury in a pattern similar to those of pre- and early streak stages of embryos, respectively. These observations indicate that RHA is necessary for early embryonic development and suggest the requirement of RHA for the survival and differentiation of embryonic ectoderm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reciprocal subtraction differential RNA display (RSDD) approach has been developed that permits the rapid and efficient identification and cloning of both abundant and rare differentially expressed genes. RSDD comprises reciprocal subtraction of cDNA libraries followed by differential RNA display. The RSDD strategy was applied to analyze the gene expression alterations resulting during cancer progression as adenovirus-transformed rodent cells developed an aggressive transformed state, as documented by elevated anchorage-independence and enhanced in vivo oncogenesis in nude mice. This approach resulted in the identification and cloning of both known and a high proportion (>65%) of unknown sequences, including cDNAs displaying elevated expression as a function of progression (progression-elevated gene) and cDNAs displaying suppressed expression as a function of progression (progression-suppressed gene). Sixteen differentially expressed genes, including five unknown progression-elevated genes and six unknown progression-suppressed genes, have been characterized. The RSDD scheme should find wide application for the effective detection and isolation of differentially expressed genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using site-specific protein-DNA photocrosslinking, we define the positions of TATA-binding protein, transcription factor IIB, transcription factor IIF, and subunits of RNA polymerase II (RNAPII) relative to promoter DNA within the human transcription preinitiation complex. The results indicate that the interface between the largest and second-largest subunits of RNAPII forms an extended, ≈240 Å channel that interacts with promoter DNA both upstream and downstream of the transcription start. By using electron microscopy, we show that RNAPII compacts promoter DNA by the equivalent of ≈50 bp. Together with the published structure of RNAPII, the results indicate that RNAPII wraps DNA around its surface and suggest a specific model for the trajectory of the wrapped DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An oligoribonucleotide (a 27-mer) that mimics the sarcin/ricin (S/R) domain of Escherichia coli 23S rRNA binds elongation factor EF-G; the Kd is 6.9 μM, whereas for binding to ribosomes it is 0.7 μM. Binding saturates when EF-G and the S/R RNA are equimolar; at saturation 70% of the input RNA is in complexes with EF-G. Binding of EF-G to S/R RNA does not require GTP but is inhibited by GDP; the inhibition by GDP is overcome by GTP. The effects of mutations of the S/R domain nucleotides G2655, A2660, and G2661 suggest that EF-G recognizes the conformation of the RNA rather than the identity of the nucleotides. EF-G also binds to an oligoribonucleotide (an 84-mer) that has the thiostrepton region of 23S rRNA; however, EF-G binds independently to S/R and thiostrepton oligoribonucleotides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Covalent fusions between an mRNA and the peptide or protein that it encodes can be generated by in vitro translation of synthetic mRNAs that carry puromycin, a peptidyl acceptor antibiotic, at their 3′ end. The stable linkage between the informational (nucleic acid) and functional (peptide) domains of the resulting joint molecules allows a specific mRNA to be enriched from a complex mixture of mRNAs based on the properties of its encoded peptide. Fusions between a synthetic mRNA and its encoded myc epitope peptide have been enriched from a pool of random sequence mRNA-peptide fusions by immunoprecipitation. Covalent RNA-peptide fusions should provide an additional route to the in vitro selection and directed evolution of proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ribozyme RNase P absolutely requires divalent metal ions for catalytic function. Multiple Mg2+ ions contribute to the optimal catalytic efficiency of RNase P, and it is likely that the tertiary structure of the ribozyme forms a specific metal-binding pocket for these ions within the active-site. To identify base moieties that contribute to catalytic metal-binding sites, we have used in vitro selection to isolate variants of the Escherichia coli RNase P RNA with altered specificities for divalent metal. RNase P RNA variants with increased activity in Ca2+ were enriched over 18 generations of selection for catalysis in the presence of Ca2+, which is normally disfavored relative to Mg2+. Although a wide spectrum of mutations was found in the generation-18 clones, only a single point mutation was common to all clones: a cytosine-to-uracil transition at position 70 (E. coli numbering) of RNase P. Analysis of the C70U point mutant in a wild-type background confirmed that the identity of the base at position 70 is the sole determinant of Ca2+ selectivity. It is noteworthy that C70 lies within the phylogenetically well conserved J3/4-P4-J2/4 region, previously implicated in Mg2+ binding. Our finding that a single base change is sufficient to alter the metal preference of RNase P is further evidence that the J3/4-P4-J2/4 domain forms a portion of the ribozyme’s active site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many examples of extreme virus resistance and posttranscriptional gene silencing of endogenous or reporter genes have been described in transgenic plants containing sense or antisense transgenes. In these cases of either cosuppression or antisense suppression, there appears to be induction of a surveillance system within the plant that specifically degrades both the transgene and target RNAs. We show that transforming plants with virus or reporter gene constructs that produce RNAs capable of duplex formation confer virus immunity or gene silencing on the plants. This was accomplished by using transcripts from one sense gene and one antisense gene colocated in the plant genome, a single transcript that has self-complementarity, or sense and antisense transcripts from genes brought together by crossing. A model is presented that is consistent with our data and those of other workers, describing the processes of induction and execution of posttranscriptional gene silencing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The translocation of specific mRNAs to dendrites and their potential for locally regulated translation are likely to serve as an effector in neuronal plasticity. Whether translation in dendrites is regulated by delivery of the RNA to sites of plasticity or a stationary pool of localized RNA undergoes enhanced translational efficiency is not clear. We show that RNA can translocate into dendrites in response to NT-3. RNA granules were visualized in cultured rat cortical neurons using the dye SYTO 14, which labels poly-ribosome complexes. Long before the morphological effects of NT-3 appeared, there was increased distal translocation of labeled complexes. This effect was blocked by K252a, a potent inhibitor of tyrosine kinase receptors. Therefore, neurons can utilize extracellular signals to alter the distribution of protein synthetic machinery via the active transport of RNA granules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genes for σ-like factors of bacterial-type RNA polymerase have not been characterized from any multicellular eukaryotes, although they probably play a crucial role in the expression of plastid photosynthesis genes. We have cloned three distinct cDNAs, designated SIG1, SIG2, and SIG3, for polypeptides possessing amino acid sequences for domains conserved in σ70 factors of bacterial RNA polymerases from the higher plant Arabidopsis thaliana. Each gene is present as one copy per haploid genome without any additional sequences hybridized in the genome. Transient expression assays using green fluorescent protein demonstrated that N-terminal regions of the SIG2 and SIG3 ORFs could function as transit peptides for import into chloroplasts. Transcripts for all three SIG genes were detected in leaves but not in roots, and were induced in leaves of dark-adapted plants in rapid response to light illumination. Together with results of our previous analysis of tissue-specific regulation of transcription of plastid photosynthesis genes, these results indicate that expressed levels of the genes may influence transcription by regulating RNA polymerase activity in a green tissue-specific manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the hook gene alter intracellular trafficking of internalized ligands in Drosophila. To dissect this defect in more detail, we developed a new approach to visualize the pathway taken by the Bride of Sevenless (Boss) ligand after its internalization into R7 cells. A chimeric protein consisting of HRP fused to Boss (HRP-Boss) was expressed in R8 cells. This chimera was fully functional: it rescued the boss mutant phenotype, and its trafficking was indistinguishable from that of the wild-type Boss protein. The HRP activity of the chimera was used to follow HRP-Boss trafficking on the ultrastructural level through early and late endosomes in R7 cells. In both wild-type and hook mutant eye disks, HRP-Boss was internalized into R7 cells. In wild-type tissue, Boss accumulated in mature multivesicular bodies (MVBs) within R7 cells; such accumulation was not observed in hook eye disks, however. Quantitative electron microscopy revealed a loss of mature MVBs in hook mutant tissue compared with wild type, whereas more than twice as many multilammelar late endosomes were detected. Our genetic analysis indicates that Hook is required late in endocytic trafficking to negatively regulate delivery from mature MVBs to multilammelar late endosomes and lysosomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is a key regulator of developmental, physiological, and tumor angiogenesis. Upregulation of VEGF expression by hypoxia appears to be a critical step in the neovascularization of solid cancers. The VEGF mRNA is intrinsically labile, but in response to hypoxia the mRNA is stabilized. We have systematically analyzed the regions in the VEGF mRNA that are responsible for its lability under normoxic conditions and for stabilization in response to hypoxia. We find that the VEGF mRNA not only contains destabilizing elements in its 3′ untranslated region (3′UTR), but also contains destabilizing elements in the 5′UTR and coding region. Each region can independently promote mRNA degradation, and together they act additively to effect rapid degradation under normoxic conditions. Stabilization of the mRNA in response to hypoxia is completely dependent on the cooperation of elements in each of the 5′UTR, coding region, and 3′UTR. Combinations of any of two of these three regions were completely ineffective in responding to hypoxia, whereas combining all three regions allowed recapitulation of the hypoxic stabilization seen with the endogenous VEGF mRNA. We conclude that multiple regions in the VEGF mRNA cooperate both to ensure the rapid degradation of the mRNA under normoxic conditions and to allow stabilization of the mRNA in response to hypoxia. Our findings highlight the complexity of VEGF gene expression and also reveal a mechanism of gene regulation that could become the target for strategies of therapeutic intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The endothelial-derived G-protein–coupled receptor EDG-1 is a high-affinity receptor for the bioactive lipid mediator sphingosine-1-phosphate (SPP). In the present study, we constructed the EDG-1–green fluorescent protein (GFP) chimera to examine the dynamics and subcellular localization of SPP–EDG-1 interaction. SPP binds to EDG-1–GFP and transduces intracellular signals in a manner indistinguishable from that seen with the wild-type receptor. Human embryonic kidney 293 cells stably transfected with the EDG-1–GFP cDNA expressed the receptor primarily on the plasma membrane. Exogenous SPP treatment, in a dose-dependent manner, induced receptor translocation to perinuclear vesicles with a τ1/2 of ∼15 min. The EDG-1–GFP–containing vesicles are distinct from mitochondria but colocalize in part with endocytic vesicles and lysosomes. Neither the low-affinity agonist lysophosphatidic acid nor other sphingolipids, ceramide, ceramide-1-phosphate, or sphingosylphosphorylcholine, influenced receptor trafficking. Receptor internalization was completely inhibited by truncation of the C terminus. After SPP washout, EDG-1–GFP recycles back to the plasma membrane with a τ1/2 of ∼30 min. We conclude that the high-affinity ligand SPP specifically induces the reversible trafficking of EDG-1 via the endosomal pathway and that the C-terminal intracellular domain of the receptor is critical for this process.