951 resultados para RNA interference (RNAi)
Resumo:
Target transformation factor analysis was used to correct spectral interference in inductively coupled plasma atomic emission spectrometry (ICP-BES) for the determination of rare earth impurities in high purity thulium oxide. Data matrix was constructed with pure and mixture vectors and background vector. A method based on an error evaluation function was proposed to optimize the peak position, so the influence of the peak position shift in spectral scans on the determination was eliminated or reduced. Satisfactory results were obtained using factor analysis and the proposed peak position optimization method.
Resumo:
Correction of spectral overlap interference in inductively coupled plasma atomic emission spectrometry by factor analysis is attempted. For the spectral overlap of two known lines, a data matrix can be composed from one or two pure spectra and a spectrum of the mixture. The data matrix is decomposed into a spectra matrix and a concentration matrix by target transformation factor analysis. The component concentration of interest in a binary mixture is obtained from the concentration matrix and interference from the other component is eliminated. This method is applied to correcting spectral interference of yttrium on the determination of copper and aluminium: satisfactory results are obtained. This method may also be applied to correcting spectral overlap interference for more than two lines. Like other methods of correcting spectral interferences, factor analysis can only be used for additive spectral overlap. Results obtained from measurements on copper/yttrium mixtures with different white noise added show that random errors in measurement data do not significantly affect the results of the correction method.
Changes in RNA, DNA, protein contents and growth of turbot Scophthalmus maximus larvae and juveniles
Resumo:
The growth potential of turbot Scophthalmus maximus larvae and juveniles was studied using nucleic acid-based indices and protein variables. The experiment was carried out from 4 to 60 days post hatching (dph). A significant increase in instantaneous growth rate during metamorphosis and retarded growth rate during post-metamorphic phase were observed. Ontogenetic patterns of DNA, RNA and protein all showed developmental stage-specific traits. The RNA:DNA ratio decreased up to 12 dph, then increased rapidly till 19 dph and fluctuated until 35 dph followed by a decline to the end. The RNA:DNA ratio was positively correlated with growth rate of juveniles during the post-metamorphic phase, whereas this ratio was not a sensitive indicator of growth during the pre-metamorphic phase and metamorphosis. The protein:DNA ratio showed a similar tendency to the RNA:DNA ratio. Changes of DNA content and protein:DNA ratio revealed that growth of S. maximus performed mainly by hyperplasia from 4 to 12 dph and hypertrophy until 21 dph during the pre-metamorphic larval phase. Growth was dominantly hypertrophical from the early- to mid-metamorphosing phase and hyperplastic thereafter. The results show that the DNA content and protein:DNA ratio can evaluate growth rates of larval and juvenile S. maximus on a cellular level.
Resumo:
Edwardsiella tarda is a pathogen with a broad host range that includes human and animals. The E. tarda hemolysin (Eth) system, which comprises EthA and EthB, is a noted virulence element that is widely distributed in pathogenic isolates of E. tarda. Previous study has shown that the expression of ethB is regulated by iron, which suggests the possibility that the ferric uptake regulator (Fur) is involved in the regulation of ethB. The work presented in this report supports the previous findings and demonstrates that ethB expression was decreased under conditions when the E. tarda Fur (Fur(Et)) was overproduced, and enhanced when Fur(Et) was inactivated. We also identified a second ethB regulator, EthR, which is a transcription regulator of the GntR family. EthR represses ethB expression by direct interaction with the ethB promoter region. In addition to ethB, EthR also modulates, but positively, luxS expression and AI-2 production by binding to the luxS promoter region. The expression of ethR itself is subject to negative autoregulation; interference with this regulation by overexpressing ethR during the process of infection caused (i) drastic changes in ethB and luxS expressions, (ii) vitiation in the tissue dissemination and survival ability of the bacterium, and (iii) significant attenuation of the overall bacterial virulence. These results not only provide new insights into the regulation mechanisms of the Eth hemolysin and LuxS/AI-2 quorum sensing systems but also highlight the importance of these systems in bacterial virulence.
Resumo:
RNA isolation is difficult in some plants and algae because phenolics, polysaccharides, or other compounds can bind or co-precipitate with RNA, and because the success of RNA isolation can be strain-specific and species-specific. To create an improved RNA isolation protocol for Laminaria japonica Aresch (Laminariaceae, Phaeophyta), four methods for extracting RNA were tested. A cetyltrimethylammonium bromide (CTAB)-based RNA extraction protocol was developed that clearly showed 28S and 18S ribosomal RNA bands and produced RNA with high yield (68 mu g g(-1) fresh weight) and high quality (A (260/280) ratio 1.96 +/- 0.05). The isolated RNA was intact, and RT-PCR analysis confirmed that further molecular application is feasible.
Resumo:
Using in vitro selection method to isolate nucleic acids, peptides and proteins has been studied intensively in recent years. In vitro mRNA display is a new and effective technique for peptides selection, and the rationale of this technique is that a synthetic mRNA with puromycin could covalently link with the protein that it encodes, thus an mRNA-protein fusion is formed. This approach has been used in identification of many functional peptides. The peptides binding with thymidylate synthase RNA were isolated using mRNA display technique from a large peptide library (>10(13) different sequences). The selection scheme was constructed, and the experimental conditions, including library synthesis, formation of RNA-peptide fusion and RNA immobilization were optimized. Eight cycles have been processed and the results confirmed that the selected peptides could bind with thymidylate synthase mRNA specifically. Compared the amino acid sequences of the selected peptides with those from the initial random library, the basic and aromatic residues in selected peptides were enriched significantly, suggesting these peptide regions may be important in the peptide-TS mRNA interaction. As a novel in vitro selection approach, mRNA display technique would be developed as a powerful tool for isolation of functional peptides and proteins that could interact with immobilized targets with high affinity and specificity.
Resumo:
中华绒螯蟹(Eriocheir sinensis)是我国的特色物种,具有重要的经济和科研价值。酚氧化酶系统作为节肢动物特有的免疫机制,在中华绒螯蟹的免疫反应中发挥重要作用。本研究构建了一个中华绒螯蟹的cDNA文库,利用表达序列标签 (Expressed Sequence Tag,EST) 技术,对中华绒螯蟹表达序列进行了大规模测序分析,并利用cDNA末端快速扩增(rapid amplification of cDNA ends,RACE)、实时定量PCR、原核重组和RNAi等技术研究了其酚氧化酶免疫系统的分子基础及其相应功能。 用鳗弧菌和金黄色葡萄球菌同时感染中华绒螯蟹,提取血细胞的RNA构建了一个库容为3.3×106 克隆cDNA文库。随机测序后获得7535条高质量的EST序列,其中在GenBank数据库中未发现同源序列的为4593 条,而具有较高同源性2942条可以分为20个功能类别,参与了23个生物学反应。 进一步分析发现,969 条(32.9% )EST与免疫相关,可拼接成221个免疫基因。这个比例高于其它任何一个已公布的甲壳动物cDNA文库。在免疫相关EST中,抗菌肽比例最高,约占总数的20.1%(195条EST)。免疫基因的高比例和抗菌肽的高表达,证明细菌刺激是提高cDNA 文库中免疫基因丰度的有效方法。 EST序列的获得和免疫基因的富集,丰富了中华绒螯蟹的基因组信息,初步了解了中华绒螯蟹固有免疫系统的概况, 为进一步克隆和研究中华绒螯蟹免疫防御功能基因提供了序列基础。 本研究在EST分析的基础上,克隆获得了中华绒螯蟹酚氧化酶系统10个基因的cDNA全长序列, 它们分别是前酚氧化酶(EsproPO),丝氨酸蛋白酶同源物(EsSPH), 丝氨酸蛋白酶抑制剂pacifastin, serpin, PAPII (EsPLC, Es serpin, EsPAPII), 模式识别丝氨酸蛋白酶(EsPRSP),peroxinectin (Esperoxinectin)和3个前酚氧化酶激活酶 (EsPAP1, 2, 3)。它们与相近物种的酚氧化酶系统相应基因均具有较高同源性,并含有胰酶催化结构域,CLIP结构域,PLD结构域,KAZAL结构域,Serpin结构域以及酚氧化酶结构域等酚氧化酶系统相应基因典型的特征结构域。分析发现,PAPs的CLIP结构域和PRSP,Pacifastin,Proxinectin,proPO基因是节肢动物特有的,是酚氧化酶系统作为节肢动物特有免疫机制的分子基础。本研究从多个基因的3′UTR区发现了调控元件,如15-LOX-DICE,K-box和 Brd-Box。在所推断的蛋白中,EsPAP3和EsPAPII的等电点呈碱性,Esperoxinetin的为中性,而EsPRSP,EsSPH,EsproPO, EsPAPII, Esserpin,EsPAP1的等电点在酸性区间。健康中华绒螯蟹 EsPAP1,EsPAP2,EsPAPII基因在肌肉中的表达量最高,而在血细胞中的表达量相对较低;EsPAP3,EsproPO,EsPLC基因在血细胞中表达量较高,在肌肉中的表达量最低。其中,EsPAP3在血细胞中的表达量是其在肌肉组织中表达量的526.35倍。调控元件和多种激活酶与抑制剂的存在、组织分布和等电点的差异,说明中华绒螯蟹酚氧化酶系统在转录、翻译、激活等多个层次上受到了调控。在中华绒螯蟹受到鳗弧菌刺激后,EsPAP1,EsPAP2,EsPAP3,EsPLC和EsPAPII基因的表达量呈上升或下降的趋势,但表达量的极限值均出现在2小时和12小时,这一规律与EsproPO应激后的mRNA表达和酶比活力的变化特点相吻合,说明中华绒螯蟹酚氧化酶系统各因子相互协调共同参与中华绒螯蟹对入侵细菌的防御反应。同时EsPAP2,EsPAP3,EsproPO,EsPAPII,EsPLC在中华绒螯蟹受到鳗弧菌刺激后的表达呈现反复多次上升,表明酚氧化酶系统可能参与了多种免疫反应。研究还发现EsPAP1参与中华绒螯蟹血液凝集过程,而EsPAP3是蟹血细胞中的有效的前酚氧化酶激活因子。研究结果初步揭示了中华绒螯蟹酚氧化酶系统的分子基础、对微生物的响应机制及其调控机制和演化趋势,为节肢动物固有免疫系统研究奠定了良好基础。
Resumo:
血管内皮生长因子(vascular endothelial growth factor, VEGF)是一种多功能的细胞因子,其主要作用是促进血管内皮细胞增殖和增加血管通透性,是肿瘤及正常组织血管生成的中心调控因素,以VEGF为靶点的肿瘤血管靶向性治疗成为近几年肿瘤治疗的新途径。RNAi是近年来新发展的一项反向遗传学技术,是一种研究基因功能的有力工具。斑马鱼作为一种重要的模式生物,被广泛用于胚胎的分子发育机制、疾病模型的构建以及药物筛选等研究中。然而在斑马鱼中运用RNAi技术进行基因功能研究是一个相对较新的领域,研究资料较少,并且目前进行的斑马鱼RNAi实验中,siRNA大都是通过化学方法或体外转录合成的。体外合成的siRNA在进入体内后会被降解而无法达到持久阻抑基因表达的目的。因此本研究旨在探讨VEGF特异性siRNA表达载体对斑马鱼VEGF基因的沉默作用,通过分析表型及相关细胞因子的变化,阐明VEGF对斑马鱼胚胎血管生成的影响及作用机制。 研究通过计算机辅助设计软件,针对斑马鱼VEGF mRNA不同位点设计合成了4段含siRNA特异序列的DNA单链,经退火,克隆入pSilencer 4.1-CMV neo载体CMV启动子下游,构建了重组质粒pS1-VEGF、pS2-VEGF、pS3-VEGF及pS4-VEGF。 通过显微注射的方法将载体导入1-2细胞期斑马鱼体内,于胚胎发育的48 h采用RT-PCR的方法检测VEGF基因的表达量,研究不同干扰序列对VEGF基因表达的干涉作用。结果显示,针对不同位点的表达载体对VEGF基因表达的抑制效率有显著差异。它们对VEGF mRNA的抑制率分别为80.5%,42.8%,12.5%,40.7%。通过筛选我们得到了一条具有高效抑制作用的载体pS1-VEGF,该载体的相应序列靶向斑马鱼两个主要异构体VEGF165和VEGF121的共有外显子序列。 形态学检测结果显示,注射了pS1-VEGF的胚胎出现了心包膜水肿、血流速度减慢、循环红细胞堆积等症状。定量碱性磷酸酶染色显示,注射pS1-VEGF能够抑制斑马鱼胚胎新生血管的形成,当注射剂量为0.4 ng时,血管生成的抑制率为31.8%。NBT/BCIP血管染色显示,注射该载体后72 h,50%的斑马鱼肠下静脉、节间血管以及其它血管的发育受到不同程度的抑制。随着注射剂量的加大,血管发育受抑制的情况也随之加重,当注射剂量为1 ng时,只有心脏、头部及卵黄有血液循环。对干扰效果的特异性进行了研究,结果表明pS1-VEGF对斑马鱼内源基因胸苷酸合成酶(thymidylate synthase, TS)基因的表达没有明显的抑制作用。针对TS基因的shRNA表达载体及与斑马鱼没有同源性的对照载体对VEGF基因表达也没有明显的抑制作用。浓度梯度实验表明在0-1.2 ng的范围内干扰效果具有剂量依赖性。 以胚胎整体原位杂交的方法检测质粒对VEGF基因受体NRP1基因表达的影响,发现VEGF特异性shRNA表达载体能够引起NRP1基因表达的降低,说明斑马鱼中VEGF所介导的血管生成作用至少在部分上是依赖于NRP通路所调节的。 本研究工作为进一步研究斑马鱼基因功能、VEGF调控网络提供了一个快速、有效的手段,为阐明斑马鱼的血管生成机制提供了新的资料,为采用RNAi技术,以VEGF为靶点,以斑马鱼为模型对肿瘤进行基因治疗研究奠定了基础。
Resumo:
Chromosomal location of the 5S ribosomal RNA gene was studied in the eastern oyster, Crassostrea virginica Gmelin. using fluorescence in situ hybridization (FISH). Metaphase chromosomes were obtained from early embryos, and the FISH probe was made by PCR (polymerase chain reaction) amplification of the 5S rRNA gene and labeled by incorporation of digoxigenin-1 1-dUTP during PCR. Hybridization was detected with fluorescein-labeled antidigoxigenin antibodies. Two pairs of FISH signals were observed on metaphase chromosomes. Karyotypic analysis showed that the 5S rRNA gene cluster is interstitially located on short arms of chromosomes 5 and 6. On chromosome 5, the 5S rRNA genes were located immediately next to the centromere, whereas on chromosome 6, they were located approximately half way between the telomere and the centromere. Chromosomes of C. virginica are difficult to identify because of their similarities in size and arm ratio, and the chromosomal location of 5S rRNA genes provides unambiguous identification of chromosomes 5 and 6. Previous studies have mapped the major rRNA gene cluster (18S-5.8S-28S) to chromosome 2. and this study shows that the 5S rRNA gene cluster is not linked to the major rRNA genes and duplicated during evolution.
Resumo:
Chromosomal location of the major ribosomal RNA genes (rRNA) were studied in the dwarf surfclam (Mulinia lateralis, Say) using fluorescence in situ hybridization (FISH). FISH probes for the rRNA genes were made by polymerase chain reaction (PCR), labeled with digoxigenin-11-dUTP and detected with fluorescein-labeled antidigoxigenin antibodies. Mulinia lateralis had a diploid number of 38 chromosomes and all chromosomes were telocentric. FISH with the rRNA probe produced positive and consistent signals on two pairs of chromosomes: Chromosome 15 with a relative length of 4.6% and Chromosome 19, the shortest chromosome. Both loci were telomeric. The rRNA location provides the first physical landmark of the M. lateralis genome.