999 resultados para RAINFALL EROSIVITY INDEX


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify the causes of population decline in migratory birds, researchers must determine the relative influence of environmental changes on population dynamics while the birds are on breeding grounds, wintering grounds, and en route between the two. This is problematic when the wintering areas of specific populations are unknown. Here, we first identified the putative wintering areas of Common House-Martin (Delichon urbicum) and Common Swift (Apus apus) populations breeding in northern Italy as those areas, within the wintering ranges of these species, where the winter Normalized Difference Vegetation Index (NDVI), which may affect winter survival, best predicted annual variation in population indices observed in the breeding grounds in 1992–2009. In these analyses, we controlled for the potentially confounding effects of rainfall in the breeding grounds during the previous year, which may affect reproductive success; the North Atlantic Oscillation Index (NAO), which may account for climatic conditions faced by birds during migration; and the linear and squared term of year, which account for nonlinear population trends. The areas thus identified ranged from Guinea to Nigeria for the Common House-Martin, and were located in southern Ghana for the Common Swift. We then regressed annual population indices on mean NDVI values in the putative wintering areas and on the other variables, and used Bayesian model averaging (BMA) and hierarchical partitioning (HP) of variance to assess their relative contribution to population dynamics. We re-ran all the analyses using NDVI values at different spatial scales, and consistently found that our population of Common House-Martin was primarily affected by spring rainfall (43%–47.7% explained variance) and NDVI (24%–26.9%), while the Common Swift population was primarily affected by the NDVI (22.7%–34.8%). Although these results must be further validated, currently they are the only hypotheses about the wintering grounds of the Italian populations of these species, as no Common House-Martin and Common Swift ringed in Italy have been recovered in their wintering ranges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of the Asian summer monsoon is documented and compared using the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA) and the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) Reanalysis. In terms of seasonal mean climatologies the results suggest that, in several respects, the ERA is superior to the NCEP-NCAR Reanalysis. The overall better simulation of the precipitation and hence the diabatic heating field over the monsoon domain in ERA means that the analyzed circulation is probably nearer reality. In terms of interannual variability, inconsistencies in the definition of weak and strong monsoon years based on typical monsoon indices such as All-India Rainfall (AIR) anomalies and the large-scale wind shear based dynamical monsoon index (DMI) still exist. Two dominant modes of interannual variability have been identified that together explain nearly 50% of the variance. Individually, they have many features in common with the composite flow patterns associated with weak and strong monsoons, when defined in terms of regional AIR anomalies and the large-scale DMI. The reanalyses also show a common dominant mode of intraseasonal variability that describes the latitudinal displacement of the tropical convergence zone from its oceanic-to-continental regime and essentially captures the low-frequency active/break cycles of the monsoon. The relationship between interannual and intraseasonal variability has been investigated by considering the probability density function (PDF) of the principal component of the dominant intraseasonal mode. Based on the DMI, there is an indication that in years with a weaker monsoon circulation, the PDF is skewed toward negative values (i,e., break conditions). Similarly, the PDFs for El Nino and La Nina years suggest that El Nino predisposes the system to more break spells, although the sample size may limit the statistical significance of the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the tropical African and neighboring Atlantic region there is a strong contrast in the properties of deep convection between land and ocean. Here, satellite radar observations are used to produce a composite picture of the life cycle of convection in these two regions. Estimates of the broadband thermal flux from the geostationary Meteosat-8 satellite are used to identify and track organized convective systems over their life cycle. The evolution of the system size and vertical extent are used to define five life cycle stages (warm and cold developing, mature, cold and warm dissipating), providing the basis for the composite analysis of the system evolution. The tracked systems are matched to overpasses of the Tropical Rainfall Measuring Mission satellite, and a composite picture of the evolution of various radar and lightning characteristics is built up. The results suggest a fundamental difference in the convective life cycle between land and ocean. African storms evolve from convectively active systems with frequent lightning in their developing stages to more stratiform conditions as they dissipate. Over the Atlantic, the convective fraction remains essentially constant into the dissipating stages, and lightning occurrence peaks late in the life cycle. This behavior is consistent with differences in convective sustainability in land and ocean regions as proposed in previous studies. The area expansion rate during the developing stages of convection is used to provide an estimate of the intensity of convection. Reasonable correlations are found between this index and the convective system lifetime, size, and depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellite-based rainfall monitoring is widely used for climatological studies because of its full global coverage but it is also of great importance for operational purposes especially in areas such as Africa where there is a lack of ground-based rainfall data. Satellite rainfall estimates have enormous potential benefits as input to hydrological and agricultural models because of their real time availability, low cost and full spatial coverage. One issue that needs to be addressed is the uncertainty on these estimates. This is particularly important in assessing the likely errors on the output from non-linear models (rainfall-runoff or crop yield) which make use of the rainfall estimates, aggregated over an area, as input. Correct assessment of the uncertainty on the rainfall is non-trivial as it must take account of • the difference in spatial support of the satellite information and independent data used for calibration • uncertainties on the independent calibration data • the non-Gaussian distribution of rainfall amount • the spatial intermittency of rainfall • the spatial correlation of the rainfall field This paper describes a method for estimating the uncertainty on satellite-based rainfall values taking account of these factors. The method involves firstly a stochastic calibration which completely describes the probability of rainfall occurrence and the pdf of rainfall amount for a given satellite value, and secondly the generation of ensemble of rainfall fields based on the stochastic calibration but with the correct spatial correlation structure within each ensemble member. This is achieved by the use of geostatistical sequential simulation. The ensemble generated in this way may be used to estimate uncertainty at larger spatial scales. A case study of daily rainfall monitoring in the Gambia, west Africa for the purpose of crop yield forecasting is presented to illustrate the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a pressing need for good rainfall data for the African continent both for humanitarian and climatological purposes. Given the sparseness of ground-based observations, one source of rainfall information is Numerical Weather Prediction (NWP) model outputs. The aim of this article is to investigate the quality of two NWP products using Ethiopia as a test case. The two products evaluated are the ERA-40 and NCEP reanalysis rainfall products. Spatial, seasonal and interannual variability of rainfall have been evaluated for Kiremt (JJAS) and Belg (FMAM) seasons at a spatial scale that reflects the local variability of the rainfall climate using a method which makes optimum use of sparse gauge validation data. We found that the spatial pattern of the rainfall climatology is captured well by both models especially for the main rainy season Kiremt. However, both models tend to overestimate the mean rainfall in the northwest, west and central regions but underestimate in the south and east. The overestimation is greater for NCEP in Belg season and greater for ERA-40 in Kiremt Season. ERA-40 captures the annual cycle over most of the country better than NCEP, but strongly exaggerates the Kiremt peak in the northwest and west. The overestimation in Kiremt appears to have been reduced since the assimilation of satellite data increased around 1990. For both models the interannual variability is less well captured than the spatial and seasonal variability. Copyright © 2008 Royal Meteorological Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is generally agreed that changing climate variability, and the associated change in climate extremes, may have a greater impact on environmentally vulnerable regions than a changing mean. This research investigates rainfall variability, rainfall extremes, and their associations with atmospheric and oceanic circulations over southern Africa, a region that is considered particularly vulnerable to extreme events because of numerous environmental, social, and economic pressures. Because rainfall variability is a function of scale, high-resolution data are needed to identify extreme events. Thus, this research uses remotely sensed rainfall data and climate model experiments at high spatial and temporal resolution, with the overall aim being to investigate the ways in which sea surface temperature (SST) anomalies influence rainfall extremes over southern Africa. Extreme rainfall identification is achieved by the high-resolution microwave/infrared rainfall algorithm dataset. This comprises satellite-derived daily rainfall from 1993 to 2002 and covers southern Africa at a spatial resolution of 0.1° latitude–longitude. Extremes are extracted and used with reanalysis data to study possible circulation anomalies associated with extreme rainfall. Anomalously cold SSTs in the central South Atlantic and warm SSTs off the coast of southwestern Africa seem to be statistically related to rainfall extremes. Further, through a number of idealized climate model experiments, it would appear that both decreasing SSTs in the central South Atlantic and increasing SSTs off the coast of southwestern Africa lead to a demonstrable increase in daily rainfall and rainfall extremes over southern Africa, via local effects such as increased convection and remote effects such as an adjustment of the Walker-type circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mersey Basin has been significantly polluted for over 200 years. However, there is a lack of quantitative historical water quality data as effective water quality monitoring and data recording only began 30-40 years ago. This paper assesses water pollution in the Mersey Basin using a Water Pollution Index constructed from social and economic data. Methodology, output and the difficulties involved with validation are discussed. With the limited data input available the index approximately reproduces historical water quality. The paper illustrates how historical studies of environmental water quality may provide valuable identification of factors responsible for pollution and a marker set for contemporary and future water quality issues in the context of the past. This is an issue of growing research interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long-term variability of the Siberian High, the dominant Northern Hemisphere anticyclone during winter, is largely unknown. To investigate how this feature varied prior to the instrumental record, we present a reconstruction of a Dec-Feb Siberian High (SH) index based on Eurasian and North American tree rings. Spanning 1599-1980, it provides information on SH variability over the past four centuries. A decline in the instrumental SH index since the late 1970s, related to Eurasian warming, is the most striking feature over the past four hundred years. It is associated with a highly significant (p < 0.0001) step change in 1989. Significant similar to 3-4 yr spectral peaks in the reconstruction fall within the range of variability of the East Asian winter monsoon (which has also declined recently) and lend further support to proposed relationships between these largescale features of the climate system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models developed to identify the rates and origins of nutrient export from land to stream require an accurate assessment of the nutrient load present in the water body in order to calibrate model parameters and structure. These data are rarely available at a representative scale and in an appropriate chemical form except in research catchments. Observational errors associated with nutrient load estimates based on these data lead to a high degree of uncertainty in modelling and nutrient budgeting studies. Here, daily paired instantaneous P and flow data for 17 UK research catchments covering a total of 39 water years (WY) have been used to explore the nature and extent of the observational error associated with nutrient flux estimates based on partial fractions and infrequent sampling. The daily records were artificially decimated to create 7 stratified sampling records, 7 weekly records, and 30 monthly records from each WY and catchment. These were used to evaluate the impact of sampling frequency on load estimate uncertainty. The analysis underlines the high uncertainty of load estimates based on monthly data and individual P fractions rather than total P. Catchments with a high baseflow index and/or low population density were found to return a lower RMSE on load estimates when sampled infrequently than those with a tow baseflow index and high population density. Catchment size was not shown to be important, though a limitation of this study is that daily records may fail to capture the full range of P export behaviour in smaller catchments with flashy hydrographs, leading to an underestimate of uncertainty in Load estimates for such catchments. Further analysis of sub-daily records is needed to investigate this fully. Here, recommendations are given on load estimation methodologies for different catchment types sampled at different frequencies, and the ways in which this analysis can be used to identify observational error and uncertainty for model calibration and nutrient budgeting studies. (c) 2006 Elsevier B.V. All rights reserved.