966 resultados para Quadratic Fields
Resumo:
Biological control is a relatively benign method of pest control. However, considerable debate exists over whether multiple natural enemies often interact to produce additive or non-additive effects on their prey or host populations. Based on the large data set stored in the Sao Joao and Barra sugarcane mills (state of São Paulo, Brazil) regarding the programme of biological control of Diatraea saccharalis using the parasitoids Cotesia flavipes and tachinid flies, in the present study the author investigated whether the parasitoids released into sugarcane fields interfered significantly with the rate of parasitized D. saccharalis hosts. The author also observed whether there was an additive effect of releasing C. flavipes and tachinids on the rate of parasitized hosts, and looked for evidence of possible negative effects of the use of multiple parasitoid species in this biological control programme. Results showed that C. flavipes and the tachinids were concomitantly released in the Barra Mill, but not in the Sao Jao Mill. Furthermore, in the Barra Mill there was evidence that the parasitoids interacted because the percentage of parasitism did not increase after the release of either C. flavipes or tachinids. In the Sao Joao Mill, when both parasitoid species were released out of synchrony, both the percentage of parasitism by C. flavipes as well as that of the tachinids increased. When large numbers of tachinids were released in the Barra Mill, they caused a significant lower percentage of parasitism imposed by C. flavipes. The implications of the results as evidence of non-additive effects of C. flavipes plus tachinids on D. saccharalis populations are discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Biological control of Diatraea saccharalis is regarded as one of the best examples of successful classical biological control in Brazil. Since the introduction of the exotic parasitoid, Cotesia flavipes, from Pakistan at the beginning of the 1970s, decrease in D. saccharalis infestation in sugarcane fields has been attributed to the effectiveness of this agent. Recently, the native Tachinidae fly parasitoids (Lydella minense and Paratheresia claripalpis) have also been implicated in this success. However, quantitative data confirming the actual contribution of these agents to the control of D. saccharalis are rather limited. The purpose of this study was to investigate the dynamics of the interactions between D. saccharalis and its parasitoids, emphasizing the temporal patterns of parasitism. To investigate this question, a large data set comprising information collected from two sugarcane mills located in the state of São Paulo, Brazil (Barra and Sao Joao sugarcane mills), was analysed. Basically, the data set contained monthly information about the number of D. saccharalis larvae and their parasitoids in each sample (man-hour per sample), the sugarcane varieties cultivated, the age of the sugarcane plants (only at the Sao Joao sugarcane mill) as well as the sugarcane cut at sampling time. The data were collected from March 1984 to March 1997 and from May 1982 to December 1996 for the Barra and Sao Joao sugarcane mills, respectively. Temporal inverse density-dependent parasitism was predominant for both parasitoid species with respect to all spatial scales. Although the temporal pattern of parasitism was not directly density dependent, it was evident that the tachinids and C. flavipes presented positive numerical responses according to variations in D. saccharalis densities through time.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work we study the behavior of charged particles immersed in a peculiar configuration of magnetic fields, which has a main constant field B(0) and a superimposed, transversal perturbation field B(1) sin(omega(p)t), with B(1) << B(0). By taking Cartesian coordinates and placing B(0) along the z axis and B(1) sin (omega(p)t) on the x axis, an analytical solution for y(t) may be obtained by solving an integrodifferential equation. Besides, the solution z(t) also exhibits a very interesting dynamics, and the entire system is conditioned by resonances between the particle orbit frequencies and the frequency of the magnetic transversal perturbation, omega(p). In this work we also discuss numerical simulations for the related particle trajectories, as well as potential applications in the context of separation phenomena.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Let p be a prime number. A formula for the minimum absolute value of the discriminant of all Abelian extensions of Q of degree p(2) is given in terms of p.
Resumo:
Let p be a prime, and let zeta(p) be a primitive p-th root of unity. The lattices in Craig's family are (p - 1)-dimensional and are geometrical representations of the integral Z[zeta(p)]-ideals < 1 - zeta(p)>(i), where i is a positive integer. This lattice construction technique is a powerful one. Indeed, in dimensions p - 1 where 149 <= p <= 3001, Craig's lattices are the densest packings known. Motivated by this, we construct (p - 1)(q - 1)-dimensional lattices from the integral Z[zeta(pq)]-ideals < 1 - zeta(p)>(i) < 1 - zeta(q)>(j), where p and q are distinct primes and i and fare positive integers. In terms of sphere-packing density, the new lattices and those in Craig's family have the same asymptotic behavior. In conclusion, Craig's family is greatly extended while preserving its sphere-packing properties.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The nonequilibrium effective equation of motion for a scalar background field in a thermal bath is studied numerically. This equation emerges from a microscopic quantum field theory derivation and it is suitable to a Langevin simulation on the lattice. Results for both the symmetric and broken phases are presented.
Resumo:
Three-dimensional quadratic gravity, unlike general relativity in (2+1)D, is dynamically nontrivial and has a well behaved nonrelativistic potential. Here we analyse the changes that occur when a topological Chem-Simons term is added to this theory. It is found that the harmless massive scalar mode of the latter gives rise to a troublesome massive spin-0 ghost, while the massive spin-2 ghost is replaced by two massive physical particles both of spin 2. We also found that light deflection does not have the 'wrong sign' such as in the framework of three-dimensional quadratic gravity.
Resumo:
Quadratic gravity in (2+1)D is nonunitarity at the tree level. When a topological Chern-Simons term is added to this theory, the harmless massive scalar mode of the former gives rise to a troublesome massive spin-0 ghost, while the massive spin-2 ghost is replaced by two massive physical particles both of spin-2. Therefore, unlike what it is claimed in the literature, quadratic Chern-Simons gravity in (2+1)D is nonunitary at the tree level.
Resumo:
We show that there exists a duality between the local coordinates and the solutions of the Klein-Gerdon equation in curved spacetime in the same sense as in the Minkowski spacetime. However, the duality in curved spacetime does not have the same generality as in flat spacetime and it holds only if the system satisfies certain constraints. We derive these constraints and the basic equations of duality and discuss the implications in the quantum theory. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Cooper pairing is studied in three dimensions to determine its binding energy for all coupling using a general separable interfermion interaction. Also considered are Cooper pairs (CPs) with nonzero center-of-mass momentum (CMM). A coupling-independent linear term in the CMM dominates the pair excitation energy in weak coupling and/or high fermion density, while the more familiar quadratic term prevails only in the extreme low-density (i.e., vacuum) limit for any nonzero coupling. The linear-to-quadratic crossover of the CP dispersion relation is analyzed numerically, and is expected to play a central role in a model of superconductivity (and superfluidity) simultaneously accommodating a Bardeen-Cooper-Schrieffer condensate as well as a Bose-Einstein condensate of CP bosons. (C) 2001 Elsevier B.V. B,V. All rights reserved.
Resumo:
We consider massive spin 1 fields, in Riemann-Cartan space-times, described by Duffin-Kemmer-Petiau theory. We show that this approach induces a coupling between the spin 1 field and the space-time torsion which breaks the usual equivalence with the Proca theory, but that such equivalence is preserved in the context of the Teleparallel Equivalent of General Relativity.