989 resultados para Pulse width modulated voltage source inverters
Resumo:
The involvement of voltage-gated calcium channels in the survival of immature CNS neurons was studied in aggregating brain cell cultures by examining cell type-specific effects of various channel blockers. Nifedipine (10 microM), a specific blocker of L-type calcium channels, caused a pronounced and irreversible decrease of glutamic acid decarboxylase activity, whereas the activity of choline acetyltransferase was significantly less affected. Flunarizine (1-10 microM, a relatively unspecific ion channel blocker) elicited similar effects, that were attenuated by NMDA. The glia-specific marker enzymes, glutamine synthetase and 2',3'-cyclic nucleotide 3'-phosphohydrolase, were affected only after treatment with high concentrations of nifedipine (50 microM) or NiCl2 (100 microM, shown to block T-type calcium channels). Nifedipine (50 microM), NiCl2 (100 microM), and flunarizine (5 microM) also caused a significant increase in the soluble nucleosome concentration, indicating increased apoptotic cell death. This effect was prevented by cycloheximide (1 microM). Furthermore, the combined treatment with calcicludine (10 nM, blocking L-type calcium channels) and funnel-web spider toxin-3.3 (100 nM, blocking T-type channels) also caused a significant increase in free nucleosomes as well as a decrease in glutamic acid decarboxylase activity. In contrast, cell viability was not affected by peptide blockers specific for N-, P-, and/or Q-type calcium channels. Highly differentiated cultures showed diminished susceptibility to nifedipine and flunarizine. The present data suggest that the survival of immature neurons, and particularly that of immature GABAergic neurons, requires the sustained entry of Ca2+ through voltage-gated calcium channels.
Resumo:
Neuroimaging studies typically compare experimental conditions using average brain responses, thereby overlooking the stimulus-related information conveyed by distributed spatio-temporal patterns of single-trial responses. Here, we take advantage of this rich information at a single-trial level to decode stimulus-related signals in two event-related potential (ERP) studies. Our method models the statistical distribution of the voltage topographies with a Gaussian Mixture Model (GMM), which reduces the dataset to a number of representative voltage topographies. The degree of presence of these topographies across trials at specific latencies is then used to classify experimental conditions. We tested the algorithm using a cross-validation procedure in two independent EEG datasets. In the first ERP study, we classified left- versus right-hemifield checkerboard stimuli for upper and lower visual hemifields. In a second ERP study, when functional differences cannot be assumed, we classified initial versus repeated presentations of visual objects. With minimal a priori information, the GMM model provides neurophysiologically interpretable features - vis à vis voltage topographies - as well as dynamic information about brain function. This method can in principle be applied to any ERP dataset testing the functional relevance of specific time periods for stimulus processing, the predictability of subject's behavior and cognitive states, and the discrimination between healthy and clinical populations.
Resumo:
OBJECTIVE: HIV-1 post-exposure prophylaxis (PEP) is frequently prescribed after exposure to source persons with an undetermined HIV serostatus. To reduce unnecessary use of PEP, we implemented a policy including active contacting of source persons and the availability of free, anonymous HIV testing ('PEP policy'). METHODS: All consultations for potential non-occupational HIV exposures i.e. outside the medical environment) were prospectively recorded. The impact of the PEP policy on PEP prescription and costs was analysed and modelled. RESULTS: Among 146 putative exposures, 47 involved a source person already known to be HIV positive and 23 had no indication for PEP. The remaining 76 exposures involved a source person of unknown HIV serostatus. Of 33 (43.4%) exposures for which the source person could be contacted and tested, PEP was avoided in 24 (72.7%), initiated and discontinued in seven (21.2%), and prescribed and completed in two (6.1%). In contrast, of 43 (56.6%) exposures for which the source person could not be tested, PEP was prescribed in 35 (81.4%), P < 0.001. Upon modelling, the PEP policy allowed a 31% reduction of cost for management of exposures to source persons of unknown HIV serostatus. The policy was cost-saving for HIV prevalence of up to 70% in the source population. The availability of all the source persons for testing would have reduced cost by 64%. CONCLUSION: In the management of non-occupational HIV exposures, active contacting and free, anonymous testing of source persons proved feasible. This policy resulted in a decrease in prescription of PEP, proved to be cost-saving, and presumably helped to avoid unnecessary toxicity and psychological stress.
Resumo:
The COMPTEL unidentified source GRO J1411-64 was observed by INTEGRAL, and its central part, also by XMM-Newton. The data analysis shows no hint for new detections at hard X-rays. The upper limits in flux herein presented constrain the energy spectrum of whatever was producing GRO J1411-64, imposing, in the framework of earlier COMPTEL observations, the existence of a peak in power output located somewhere between 300-700 keV for the so-called low state. The Circinus Galaxy is the only source detected within the 4$\sigma$ location error of GRO J1411-64, but can be safely excluded as the possible counterpart: the extrapolation of the energy spectrum is well below the one for GRO J1411-64 at MeV energies. 22 significant sources (likelihood $> 10$) were extracted and analyzed from XMM-Newton data. Only one of these sources, XMMU J141255.6-635932, is spectrally compatible with GRO J1411-64 although the fact the soft X-ray observations do not cover the full extent of the COMPTEL source position uncertainty make an association hard to quantify and thus risky. The unique peak of the power output at high energies (hard X-rays and gamma-rays) resembles that found in the SED seen in blazars or microquasars. However, an analysis using a microquasar model consisting on a magnetized conical jet filled with relativistic electrons which radiate through synchrotron and inverse Compton scattering with star, disk, corona and synchrotron photons shows that it is hard to comply with all observational constrains. This and the non-detection at hard X-rays introduce an a-posteriori question mark upon the physical reality of this source, which is discussed in some detail.
Resumo:
Pulse-wave velocity (PWV) is considered as the gold-standard method to assess arterial stiffness, an independent predictor of cardiovascular morbidity and mortality. Current available devices that measure PWV need to be operated by skilled medical staff, thus, reducing the potential use of PWV in the ambulatory setting. In this paper, we present a new technique allowing continuous, unsupervised measurements of pulse transit times (PTT) in central arteries by means of a chest sensor. This technique relies on measuring the propagation time of pressure pulses from their genesis in the left ventricle to their later arrival at the cutaneous vasculature on the sternum. Combined thoracic impedance cardiography and phonocardiography are used to detect the opening of the aortic valve, from which a pre-ejection period (PEP) value is estimated. Multichannel reflective photoplethysmography at the sternum is used to detect the distal pulse-arrival time (PAT). A PTT value is then calculated as PTT = PAT - PEP. After optimizing the parameters of the chest PTT calculation algorithm on a nine-subject cohort, a prospective validation study involving 31 normo- and hypertensive subjects was performed. 1/chest PTT correlated very well with the COMPLIOR carotid to femoral PWV (r = 0.88, p < 10 (-9)). Finally, an empirical method to map chest PTT values onto chest PWV values is explored.
Resumo:
Inhibitory control, a core component of executive functions, refers to our ability to suppress intended or ongoing cognitive or motor processes. Mostly based on Go/NoGo paradigms, a considerable amount of literature reports that inhibitory control of responses to "NoGo" stimuli is mediated by top-down mechanisms manifesting ∼200 ms after stimulus onset within frontoparietal networks. However, whether inhibitory functions in humans can be trained and the supporting neurophysiological mechanisms remain unresolved. We addressed these issues by contrasting auditory evoked potentials (AEPs) to left-lateralized "Go" and right NoGo stimuli recorded at the beginning versus the end of 30 min of active auditory spatial Go/NoGo training, as well as during passive listening of the same stimuli before versus after the training session, generating two separate 2 × 2 within-subject designs. Training improved Go/NoGo proficiency. Response times to Go stimuli decreased. During active training, AEPs to NoGo, but not Go, stimuli modulated topographically with training 61-104 ms after stimulus onset, indicative of changes in the underlying brain network. Source estimations revealed that this modulation followed from decreased activity within left parietal cortices, which in turn predicted the extent of behavioral improvement. During passive listening, in contrast, effects were limited to topographic modulations of AEPs in response to Go stimuli over the 31-81 ms interval, mediated by decreased right anterior temporoparietal activity. We discuss our results in terms of the development of an automatic and bottom-up form of inhibitory control with training and a differential effect of Go/NoGo training during active executive control versus passive listening conditions.
Resumo:
It is shown that spatially selective inversion and saturation can be achieved by concatenation of RF pulses with lower flip angles. A concatenation rule which enables global doubling of the flip angle of any given excitation pulse applied to initial z magnetization is proposed. In this fashion, the selectivity of the single pulse is preserved, making the high selectivity achievable in the low flip-angle regime available for inversion and large flip-angle saturation purposes. The profile quality achievable with exemplary concatenated pulses is investigated in comparison with adiabatic inversion. It is verified that by using concatenated inversion in the transfer insensitive labeling technique (TILT), the MT artifact is suppressed. Copyright 2000 Academic Press.
Resumo:
Fortunato Bartolomeo De Felice (1723-1789) fut le maître d'oeuvre de l'Encyclopédie d'Yverdon (1770-1780), une refonte complète et originale de l'Encyclopédie de Diderot et d'Alembert. Inséré dans un vaste réseau scientifique et commercial, De Felice était en relation épistolaire avec de nombreux savants et libraires de l'Europe des Lumières. Restée presque entièrement inédite jusqu'à sa récente publication sous forme électronique, la correspondance de De Felice constitue une véritable mine d'informations : ces lettres apportent un éclairage précieux sur l'encyclopédisme, le marché du livre et la circulation des savoirs à la fin de l'Ancien Régime. La présente étude se propose de montrer en quoi cette riche correspondance documente de manière renouvelée la question des transferts culturels au XVIIIe siècle : à la lumière de cette source exceptionnelle, De Felice apparaît en effet comme un intermédiaire culturel de premier plan.
Resumo:
Frequently the choice of a library management program is conditioned by social, economic and/or political factors that result in the selection of a system that is not altogether suitable for the library’s needs, characteristics and functions. Open source software is quickly becoming a preferred solution, owing to the freedom to copy, modify and distribute it and the freedom from contracts, as well as for greater opportunities for interoperability with other applications. These new trends regarding open source software in libraries are also reflected in LIS studies, as evidenced by the different courses addressing automated programs, repositorymanagement, including the Linux/GNU operating system, among others. The combination of the needs of the centres and the new trends for open source software is the focus of a virtual laboratory for the use of open source software for library applications. It was the result of a project, whose aim was to make a useful contribution to the library community, that was carried out by a group of professors of the School of Library and Information Science of the University of Barcelona, together with a group of students, members of a Working Group on Open Source Software for Information Professionals, of the Professional Library Association of Catalonia.
Resumo:
This study investigated the spatial, spectral, temporal and functional proprieties of functional brain connections involved in the concurrent execution of unrelated visual perception and working memory tasks. Electroencephalography data was analysed using a novel data-driven approach assessing source coherence at the whole-brain level. Three connections in the beta-band (18-24 Hz) and one in the gamma-band (30-40 Hz) were modulated by dual-task performance. Beta-coherence increased within two dorsofrontal-occipital connections in dual-task conditions compared to the single-task condition, with the highest coherence seen during low working memory load trials. In contrast, beta-coherence in a prefrontal-occipital functional connection and gamma-coherence in an inferior frontal-occipitoparietal connection was not affected by the addition of the second task and only showed elevated coherence under high working memory load. Analysis of coherence as a function of time suggested that the dorsofrontal-occipital beta-connections were relevant to working memory maintenance, while the prefrontal-occipital beta-connection and the inferior frontal-occipitoparietal gamma-connection were involved in top-down control of concurrent visual processing. The fact that increased coherence in the gamma-connection, from low to high working memory load, was negatively correlated with faster reaction time on the perception task supports this interpretation. Together, these results demonstrate that dual-task demands trigger non-linear changes in functional interactions between frontal-executive and occipitoparietal-perceptual cortices.
Resumo:
Optimal behavior relies on flexible adaptation to environmental requirements, notably based on the detection of errors. The impact of error detection on subsequent behavior typically manifests as a slowing down of RTs following errors. Precisely how errors impact the processing of subsequent stimuli and in turn shape behavior remains unresolved. To address these questions, we used an auditory spatial go/no-go task where continual feedback informed participants of whether they were too slow. We contrasted auditory-evoked potentials to left-lateralized go and right no-go stimuli as a function of performance on the preceding go stimuli, generating a 2 × 2 design with "preceding performance" (fast hit [FH], slow hit [SH]) and stimulus type (go, no-go) as within-subject factors. SH trials yielded SH trials on the following trials more often than did FHs, supporting our assumption that SHs engaged effects similar to errors. Electrophysiologically, auditory-evoked potentials modulated topographically as a function of preceding performance 80-110 msec poststimulus onset and then as a function of stimulus type at 110-140 msec, indicative of changes in the underlying brain networks. Source estimations revealed a stronger activity of prefrontal regions to stimuli after successful than error trials, followed by a stronger response of parietal areas to the no-go than go stimuli. We interpret these results in terms of a shift from a fast automatic to a slow controlled form of inhibitory control induced by the detection of errors, manifesting during low-level integration of task-relevant features of subsequent stimuli, which in turn influences response speed.
Resumo:
Myoblast transfer therapy has been extensively studied for a wide range of clinical applications, such as tissue engineering for muscular loss, cardiac surgery or Duchenne Muscular Dystrophy treatment. However, this approach has been hindered by numerous limitations, including early myoblast death after injection and specific immune response after transplantation with allogenic cells. Different cell sources have been analyzed to overcome some of these limitations. The object of our study was to investigate the growth potential, characterization and integration in vivo of human primary fetal skeletal muscle cells. These data together show the potential for the creation of a cell bank to be used as a cell source for muscle cell therapy and tissue engineering. For this purpose, we developed primary muscular cell cultures from biopsies of human male thigh muscle from a 16-week-old fetus and from donors of 13 and 30 years old. We show that fetal myogenic cells can be successfully isolated and expanded in vitro from human fetal muscle biopsies, and that fetal cells have higher growth capacities when compared to young and adult cells. We confirm lineage specificity by comparing fetal muscle cells to fetal skin and bone cells in vitro by immunohistochemistry with desmin and 5.1 H11 antibodies. For the feasibility of the cell bank, we ensured that fetal muscle cells retained intrinsic characteristics after 5 years cryopreservation. Finally, human fetal muscle cells marked with PKH26 were injected in normal C57BL/6 mice and were found to be present up to 4 days. In conclusion we estimate that a human fetal skeletal muscle cell bank can be created for potential muscle cell therapy and tissue engineering.